PTD-MT-2U-234-69

FOREIGN TECHNOLOGY DIVISION

AD700596

MECHANICS OF SPACE FLIGHT
by

G. L. Grodzovskiy, D. Ye. Okhotsimskiy,
et al.

Distribution of this document Is ‘
unlimited. |t may be releas=< to

the Cleasinghous., Departrieit v
Commerce, for 3l to the general .

pubiic.

—

Reproduced by the
CLEARINGHOUSE
r o odoral ont, & e ca'

Intormatio pngteld ¥ 22151

q(



This document is a machine translation of Russian
text which has lLeen processed by the AN/GSQ-16(XW-2)
Machine Tr:anasl .tor, owned and operated by the United
States Air Force, The machine output has been post-
edited tu correct for major ambiguities of meaning,
words missing from the machine's dictionary, and words
out of the context of meaning, The sentence word
order has been partially rearranged for readability,
The content of this translation does not indicate
editorial accuracy, nor does 1t indicate USAF approval

or disapproval of the material translated.



FID-MT-2u2:0a60

EDITED MACHINE TRANSLATION

MECHANICS OF SPACE FLIGHT

By: 0. L. OGrodzovskiy, D. Ye. Okhotsimskiy,
et al.

English pages: 89

Source: Mekhanika v SSSR za 50 let.
Obshchaya 1 Prikladnaya Mekhanika
(Fifty Years of Mechanics in
the USSR. General and Applied
Mechanics), 1968, Vol. 1, pp.
265-3190

THIS TRANSLATION 15 A RENDITION OF THE ORIGH
NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR

EDITORIAL COMMENT. STATEMENTS OR THEORIES PREPARED BY:

ADVOCATED OR IPLIED ARE THOSE OF THE SOURCE

AND DO NOT NECESSARILY REPLECT THE POSITION TRANSL ATION DIVISION

OR OPNNON OF THE POREIGN TECHNOLOGY Di- FOREIGN TECHNOLOGY DIVISION
VISION. WP.AFB, ONIO.

FID-MT- 2u-23u-60 Date2s oct 19 69



U, S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block Itali

A a A s A, & P
B 6 8§ B, b (v
B » B e vV, v T
rre r o G, g b4
aa ae D, 4 ®
E o E o Ye, ye; E, e X
WM m X x Zh, zh u
I ) L] 2, ¢ Y
H a H I, 1 w
R s A e Y, ¥y w
K x K = K, k D
N = N a L1 |
M x M M, m b
H » H N, n ]
0O o (] 0, o 0
N a noa P, P n

NgeTgrgpsE ReT - 09

VJOUOrEYEELRNOCNOY

..-'Q""&k‘YI“\

¢ Transliteration Block Italic Transliteration

E, e

Yu, yu
Ya, ya

* ye initially, after vowels, and after %, b; 3_e13ewhere.
en written as ¥ in Russian, transliterate as y¥ or ¥.
The use of diacritical marks is preferred, but such marks
may be omitted when expediency dictates.

FTD-MT-24-234-69 i



FOLLOJING ARE THE CORRESPONDING AUSSIAN AND ENOLISH
DESIONATIONS OF TME TRIOGNOMETRIC FUNCTIONS

Russian English
ola oin
600 008
tg tea
otg oot
200 sec
0008c csc
sh eiah
ch oosh
th tamh
oth ooth
sch sech
cech osch
arc oia oin-l
are oo m’l
are g tan-)
arc otg =1
are sec sec-1
arc oesee cse~l
arc sh stan=1
are ch o
aro th

aro oth

are sch

are csch

&
11

-

FTD-MT- . t=234-69 11



MECHANICS OF SPACE FLIGHT

G. L. Grodzovskiy, D. Ye., Okhotsimskiy,
V. V. Beletskiy, Yu, N, Ivanov,
A, I, Kurtyanov, A. K. Platonov,
V. A, Sarychev, V., V, Tokarev,
and V, A, Yaroshevskiy

Progress of space rocket technology brought to life new divisions
of mechanics. The idea formed at the boundary of the 19th and 20th
Centuries of application of Jet engines for going into space stimulated
development of mechanics of space flight (I. V., Meshcherskly, 1897;

K. E. Tsiolkovskiy, 1903; R. Goddard, 1919; G. Obert, 1923; F. A,
Tsander, 1924-1925; V., Goman, 1925; R. Eno-Pel'tri, 1930; S. P. Korolev,
1934, and others), This science studies the motion of spacecraft as
bodies of variable mass for the purpose of determining the conditions
of the most economical use of technical means for solutions of the
basic problem of flight.

Our Native land, having given to the world such scientists as
I. V. Meshcherskiy and X, E. Tsiolkovskiy, is the native land of the
theoretical bases of contemporary space rocket technology. The
beginning of the mechanics of bodies of variable mass 1s embodied in
the remarkable work of the Petersburg University professor I, V.
Meshcherskiy "Dynamics of a point of variable mass" (1897), in which
for the first time was derived the general equation of motion of a
point of variable mass, In 1903 K, E, Tsiolkovskiy published in his
pamphlet "Investigation of outer space by rocket instruments" a solution
of the first problem of mechanics of space flight, determining the
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connection between final Gy and initial Go weights of rocket equipment,
exit velocity of the jet stream V and increase in the speed of the
craft Av during flight in a force-free field:

-&--o‘v.
Using this formula, K, E, Tsiolkovskiy for the first time showed that
a rocket can reach space speeds of flight with sufficient relative
reserve of fuel ©, = (G, — G)/G,.

The Soviet School of Mechanics of Space Flight ensured proper
development of this science, necessary for solution of problems of
investigating and conquering outer space. The contemporary state of
development of this field of mechanics takes its beginning from the
basic works of A, Yu. Ishlinskiy, A. A, Kosmodem'yanskiy and D, Ye,
Okhotsimskiy (1946). Below are briefly stated the basic results
attained by Soviet scientists in the field of mechanics of space
flight. One can become better acquainted with these questions, and
also with the works of foreign authors from the well-known monographs
and survey works of A. A. Kosmodem'yanskiy (1951), I. N, Sadovskly
(1959), F. R. Gantmakher and L. M., Levin (1959), L. I. Sedov (19%60),
G. N. Duboshin and D, Ye, Okhotsimskiy (1963, 1965), Ye, V. Tarasov
(1963), I. V. Ostoslavskiy (1963), G. L. Grodgzovekiy, Yu. N. Ivanov and
V. V. Tokarev (1963-1966), K. B. Alekseyev and G. G. Bebenin (196%),
G. V. Korenev (1964), V. M, Ponomarev (1965), V, V. Beletskiy (1965),
V. A, Sarychev (1965), V. A. Yegorov (1965), R. F. Appazov, 8, S,
Lavrov and V., P, Mishin (1966) and others.

, §14, timization of the Motion of the
Center o g8ses of a acecralit,
neral Questions o 8 n,
0 rbits

1,1, Equations of the variational problem, Optimization of the
motion of the center of masses of a rocket is one of the basic problems
of mechanics of space flight, In this connection was developed the
division of mechanics of space flight, examining in total optimum
relationships between weight components of a rocket, taking into

FTD-MI-24-234-69 2



k

account the weight of the basic elements of the propulsion system,
optimum control of the propulsion system and optimum trajectories
of space flight,

In the mechanics of space flight the problem of finding conditions
of delivery of maximum payload G, is separated by virtue of {ts ,
determining influence on the ideology of arrangement and control of
spacecraft., With this aspect is connected formulation of the problems
in the plan of optimization of trajectory of motion, controlling param-
eters and weight components of the propulsion system.

The general formulation of the variational problem shown 1s that
it is required to fulfill an assigned dynamic maneuver of flight from
a fixed point O of phase space of coordinates — speeds [ro, rO] to
fixed point 1 ['1‘ '1] in a fixed time T with maximum payload G, at
assigned initial weight of craft G,. The differential connections
of this variational problem with the corresponding boundary conditions
can be recorded in the form

G —gg. 6®=6s 6@ =G.+G.
ruv, rOmr, r(N=r, (1.1)
V=g +RIE, cO)=en o(N)=r,

Here », ¢ G are a set of phase coordinates (» and r are the radius
vector and speed of center of masses of the craft, G is the current
weight of the craft), q, P, e are the set of controlling functions
and controlling parameters (q is the mass flow rate of the working
substance, and P and e are the magnitude and unit vector of direction
of thrust), As for the remaining designations, R=R(r, t) is the
g-vector from gravitational forces, F is the g-vector from other
external forces (for example, from the force of aerodynamic drag), g
18 the coefficient of proportionality between mass and weight, and

Gn is the weight of the propulsion system,
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In recording (1.1) the craft is considered to consist of payload
Gy, reserve of working substance

T
e

and propulsion system Gn' The weight formula of such a craft has the
form

G=Ga+Gy+ G (1.2)

The other weight couponents (for example, the welght of structural
elements, the weight of tanks for working substance GB and so forth)
conditionally pertain to payload. According to necessity these
components are also considered in the variational formulation.

The dimension of phase space describing the state of the craft
can be increased with complication of the problem, To phase coordinates
r ® G can be added new coordinates, for example, t - the current
time of work of the propulsion system or Gﬁ and G - for problems of
.ptimum discharge of tanke and engine, Then system (4.1) is supple-
wented by differential equations describing the change of these phase
coordinates; in the notted examples these equations are

in=8, Gy=—pp Gum—po (1.3)

New controlling functions appear: 8(f)=1{ or O is the function of
switching the engine on or off, ¢ (>0, ¢.()>0 18 the function
responsible for discharging the tanks and sections of the englne.

System (1.1) is represented in the form of ordinery differential
first orger equations solved relative to derivatives. This permits
formulating a variational problem as a Mayer problem and reducing 1t
$0 a boundary value problem for a system of ordinary differentlal
equations with finite relationships for controlling functions (for
greater detail see the book of G, L. Grodzovekiy, Yu. N, Ivanov and
V. V. Tokarev, 1966).



The initial problem is formulated thus: for system (1.1) to
determine controlling functions and controlling peremeters q, P, e,
Gn’ ensuring fulfillment of boundary conditions and delivering maximum
payload G, = G(T) - G,

In the described formulation is assigned a dynamic maneuver and
initial weight and maximum payload 1s sought, Instead of thils are
examined also equivalent formulations: dynamic maneuver and useful
weight are assigned and minimum initial weight is determined; useful
and initial weights are assigned and minimum time of fulfillment of
maneuver or the outer limit of some phase coordinate 1s found, The
economy of fuifillment of the maneuver cean be also characterized by
another criterion of optimumness, for example, minimum cost of fulflll-
ment of maneuver; such an approach is in the initial stage of inves-
tigation,

1.2, Basic characteristics of propulsion systems. The formulation
shown in p. 1.1 of the problem of optimizatlon 1s organically connected
with the characteristics of propulsion systems, The glven variational
formulation should be specified for every type of propulsion system,

First, 1t is necessary to indlcate functional expressions of
thrust P and flow rate g through independent controls u = (ui, PN
un) and parameters = (wi, cens wm) of the propulsion syste~m (regula-
ting engine performance):

P=P(u, ), g=q(u, )
u()eU, e = const } (1.%)

(U is the permiesible region of control; into the number of perameters

w must enter limiting values of controls u).

Secondly, it is necessary to determine the weight of the propulsion
system G% es a function of parameters « (the weight formula of the

engine):

G, =Gy (10). (1.5)



The characteristics (1.4)-(1,5) will be defined as basic,
According to complication problems can require additional information
atout engine properties, for example, about resource (p. 3.3) and
atout intensity of flow of rejections (p. 4.3).

Propulsion systems are split up into three large categories,
depending upon the main limitation on the regulating characteristic
(1.4) caused by the nature of physical processes in the engine, The
main limitation from the point of view of mechanics of flight is
characterized by the fact that the optimum operating mode of the
engine, as a rule, corresponds to the approach to this limitation.
Such limitations are limitation of the exit velocity of the Jet
stream, limitation of power and limitation of the thrust of the
propulsion system,

To engines cf limited exit velocity (§ 2) belong all thermal jet
engines, exit velocity for which does not exceed the 1limit depending
on the maximum temperature of the walls of the combustion chamber of
heat exchanger. The weight of an engine of limited exit velocity
-pends on maximum thrust (for example, for a liquid-fuel rocket
<agine), Characteristics (1.4)-(1.5) for such engines are recorded
in the form (m= (P, V), = (Pges. Vau)):

P=P, q=§. Cu=1Pau (1.6)
O<PO<Paczs 0<V ()< Vs

To engines of limited power (pp. 3.1-3.3) belong systems consisting
of a source 9( power and a rocket propelling agent transforming energy
produced by the source into kinetic energy of directed motion of the
jet stream, The presence of a separate source of limited power
determines the basic properties and name of the examined category of
propulsion systems, The regulating characteristic (1.4) and weight
formula (1.5) for an engine of limited speed looks thus:

’-m. q=q, o--"-n':""- (1'7)
O<CN < Nau: 0K <tann: Pats =V Waastmas).



To engines with limited thrust (p. 3.4) belong sail systems,
for example, solar or isotope sail, the value of thrust of which is
limited by the maximum area of the sail smax’

P<Pas=tSues:  Cu= YPrue. (1.8)

A more detalled description of the characteristics of space
propulsion systems from positions of mechanics of flight is given
in a book of G. L. Grodzovskiy, Yu. N, Ivanov, and V, V, Tokarev

(1966).

1.3. Limitations in the designing of orbits. A complex of
requirements 1s imposed on space flight on the whole by a number of
esgential limitations to selection of optimum, in the sense of the
problem (1.1), orbits of flight (see the survey of G, N. Duboshin
and D. Ye. Okhotsimskiy, 1965).

During initial consideration is essentially investigated the
whole totality of orbits ensuring, at least in principle, solution
of the basic problem of flight, For example, during designing of
flight to the moon it 1s important to present all possible trajectcries,
to know how to determine initial conditions necessary for realization
of those or other trajectories, to determine kinematic and dynamic
characteristics of orbits (time of flight, speed of encounter with
the moon, necessary initial energy, condition of observation from
assigned points of eerth's surface ard others),

During the analysis it is possible to remove orbits which better
satisfy those or other requirements both with respect to efficiency
of solution of the basic problem of flight and with respect to
simplicity and econory of realizetion., These requirements for the most
part are contradictory, and the final solution is most frequently the
result of compromise and calculation of avallable rescl technical
possibilities,



One of the most important orbit requirements is power economy
af launching and orbit achievement. Two basic methods of achleving
space orbits are used: continuous active section and launch from
s ellite orbit. The first method is technically simpler; however,
in certain cases its realization causes difficulty, The fact is that
seloction of a launch site is inevitably limited, and for acceleration
>f a spacecraft of an assigned purpose 1t can be necessary to use
trajectories steeply inclined to the local horizon, This causes growth
of losses overcoming gravity and lowering of spacecraft weight, The
method of continuous acceleration limits the range of directions of
cpeed at the beginning of motion along the orbit, making more desirable
not only orbits with the lowest possible initial speed, but also
orbits with the least possible slope of the velocity vector to the
local horizon at the end of the active section.

The method of launching from satellite orbit is free from power
1imitations on direction of acceleration. Any direction of velocity
vector is obtained by the proper selection the time of launching to
the intermediate orbit of the satellite (what glves aiming with respect
to azimuth by turn of intermediate orbit together with earth in its
daily motion) and selection of time of launching from satellite orbit
(what gives aiming by angle of place at the expense of the fact that
deparature from satellite orbit occurs in a place where motion along
the satellite orbit has the required direction). Acceleration of a
spacecraft both during orbit achievement and during escape from it
occurs at minimum angles of inclination to the local horizon and ensures
maximum use of the power potential of the carrier rocket, Mastery by
Soviet scientists and engineers of a method of launching spacecraft
from satellite orbit is an outstanding technical achievement. Use
of such a method of orbit achievement limits only the value of initial
speed along the orbit, allowing orbit achievement of spacecraft of
great welight, sharply expanding the range of possible orbits and
facilitating the conditions for their expedient selection.

During the use of the method of orbit achievement with exit to
intermediate satellite orbit, the most desirable space orbits are
those with the lowest initial speed. During acceleration with



continuous active section it is important that both speed and angle
to the local horizon be as low as possible,

Another complex of questlons connected with designing of orbits
ts investigation of the necessary accuracy of realization of the
selected nominal orbit and gselection of a correction method, In
those cases in which flight is carried out without correction of
trajectory on the way, the problem consists in exposure of the
deviation domain of parameters at the end of the acceleration phase,
so that the basic problem of flight could be solved if the deviation
do not exceed the bounds of the shown region., For example, *f the
goal of the flight is to reach the moon, then deviations of parameters
of removal are looked for with wrich the orbits pass through the moon
and, this means the moon 1s reached, Naturally, the less constrained
the limitations on the region of scattering of parameters of orbit
achievement, the simpler realization of flight, the less requirement
for accuracy of equipment ensuring orbit achlevement, the lower the
weight of this equipment and the higher its reliability, Therefore,
it is desirable to select orbits of space flight which allow the
greatest deviations of parameters of orbit achievement. This require-
ment can be and usually 1is in contrediction with optimum energy of
orbit, and this situation is characteristic in questions of designing
orbits,

It can turn out that the permissible region of initial deviations
1s excessively small and cannot be realized by existing technicel
means. Furthermore, knowledge the constants of celestial mechanics
(such as solar parallax or elements of planet orbits) can be insuffi-
cient, so that even ideal fulfillment of conditions of orbit achievement
does not guarantee achievement of the goal of space flight, In these
cases should be used correction of orbit on the way — correction of
parameters of motion which can be fulfilled by communication of
pulses of the proper magnitude and direction in certain places of the
orbit. The orbit can be corrected both once during the period of
flight and several times.



Correction of orbit requires presence on board of a correcting
pr opulsion system and a reserve of fuel. The value of additional
welght which must be taken on board a spacecraft in connection with
currection of orbit depends on the value of the correcting impulse on
the value of total impulse in case of repeated correction. The value
of correcting impulse depends on scattering of motion parameters at
the end of the acceleration phase and will be greater, the greater the
region of scattering., Furthermore, the value of impuse necessary for
correction of orbit depends on the place on the orbit where this
correction is realized, For example, if correction is produced too
close to the target, then for this can be required a very great change
of speed and a large correcting pulse, and consequently also considerable
additional weight on board the spacecraft,

During selection of orbits preference is given to orbits which
allow the simplest and most economical correction possible. Simul-
taneously appears the problem of optimization of correction, 1i.e.,
such selection of orbit and such selection of correction points on 1t
that performance of correction requires minimum total impulse and
minimum additional weight on board the spacecraft.

Solution of the problem of correction is connected with the need
for exact determination of actual parameters of motion during flight,
calculation of deviations of parameters of motion from the nominal
values and calculation of necessary parameters of correction.

Determination of orbit parameters 1s a classical problem of
celestial mechanics. However, its solution for spacecraft is connected
with fulfillment of a number of specific requirements., For example,
it 1s rrequéntly necessary to determine orbit parameters as fast as
possible, Therefore, the algorithm of calculation, which usually
contains an 1terative process, should be very economical and ensure
poth a small number of Zterations and a short time of fulfillment of
every iteration. Of the algorithm of calculations is required also
high reliability and dependability, guaranteeing convergence of
process even with insutficiently successful selection of initlal
approximation,
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Accuracy of determination of actual orbit parameters depends on
composition and accuracy of measured parameters, and also on location
of the mecsured interval of the orbit and on its extent, At assigned
compositioa and accuracy of measurements, as a rule, parameters of
actual motion can be determined accurately (and orbits can be
corrected more reliably and accurately) the larger the section on
vwhich the orbit is measured. However, unnecessary tightening is not
rational, since i1t can lead to correction which is too late and an
excessively high value of correcting impulse,

Early correction can be more economical; however, insufficient
accuracy of determination of orbit parameters by the moment of its
fulfillment can lead to insufficient accuracy of correction and to
the necessity of its repeated fulfillment,

The given considerations 1llustrate the complexity and contradic-
tory nature of problems connected with the designing of the system
of measurements and correction of orbit, i,e., the designing of the
flight control system, Optimum solution of the flight control problem
consists in creation of a system ensuring solution of the basic problem
of flight the most simply and reliably and the most economically with
respect to the weights on board. Therefore, during selection it is
expedient to prefer those orbits for which it is possible to carry
out the most optimum control of flight,

Designing of orbits boils down to exposure and calculation of a
number of contradictory orbit requirements, part of which is briefly
shown above, to overall analysis and selection of an orbit which
satlsfies requirements to a maximum extent. Comprehensive analysis
of flight requires calculation of a large number of variants. At the
same time requirements for accuracy of calculations on the initial
stage of design are usually not too high, Therefore, a reasonable
solution 1s development and use of different methods allowing simply,
economically and visually, although with limited accuracy, analyzing
orbits with respect to satisfaction of requirements placed on them and
looking for compromise variants giving the best solution of the problem
on the whole.
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A further stage of designing for selected varliants requires
dcfinitized calculations considering all necessary factors affecting
spacecraft flight, Such calculations are usually conducted by methods
o! numerical integration with use of the most exact constants and
have as thelr goal the obtaining of exact values of parameters of
flight and orbit achievement., Since definitized calculations are
frequently very labor-consuming, the problem of development of
effective methods of calculation is here not less acute than with
respect to calculations for the stage of preliminary designing. An
effective method of definitized calculation should combine necessary
accuracy with speed of calculations. Therefore, creation of methods
requires maximum use of knowledge of the orbit. For example, spacecraft
motion with respect to the earth inside its sphere of action 1s closely
to motion along a conic section with its focus at the center of earth,
Motion outside the sphere of action of earth is close to heliocentric
motion in an unperturbed orbit, etc. Calculation of these circumstances
opens the path to improvement of the method of definitized calculations,
Of course, other paths are also possible.

Methods of investigation of orbits are essentlally determined by
character of flight, It is possible to distinguish multiturn orbits
and orbits with small angular distance. To orbits of the first type
belong orbits of satellites of the earth, moon, planets, accomplishing
during the time of i1ts exlistence a large number of turns, Investigation
and designing of such orbits 1s connected with use of the methods
which allowing revealing the picture of evolution of the parameters
of an osculating orbit with the passage of time under the influence
of perturbing factors, such as the eccentricity of the field of gravi-
tation, the influence of light pressure, etc, The problem of calcula-
tion of the process of evolution can be considered & problem of
nonlinear oscillations, and wide application of different methods of
averaging and technology of construction of asymptotic solutions can
ensure creation of simple and effective methods both for preliminary
and for definitized calculation,
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Orbits with a small angular distance are, for example, orbits of
flights from the earth to the moon and from earth to 'Mars, Venus or
other planets, Orbits of such flights constitute in the first approx-
imation arcs of conic sections, and questions of evolution do not
come up here,

Approximation methods are created either without taking distur-
bances into account or taking them into account in a rather rough
form. Thus, the orbit of flight to Mars can be considered to consist
of three pieces of conic sections: undisturbed geocentric motion in
the spere of action of earth, undisturbed heliocentric motion outside
with 1ts focus at the center of Mars, when motion occurs inside the
sphere of 1ts action.

Such are the basic considerations about the designing of orbits
spacecraft,

Questions of concrete plotting of orbits are investigated in
detail and are expounded in "Course of celestial mechanics," of
M. F. Subbotin (1949, 1963), in works of V, A. Yegorov (1957, 1965),
M. L. Lidov (1961, 1964), P. Ye. El'yasberg (1963), M, S. Yarov-Yarovy
(1963), S, S. Tokmalayeva (1%63), G. N. Duboshin (1%63), D. Ye.
Okhotsimskiy (1964), N, M. Teslenko (1964), A, I. Lur'ye (1955), I. Kh.
Segal (1965), S. V. Petukhov (1966) and others.

§ 2., Mechanics of Space Flight with
Engines of ILimited Exit Ve%ocIﬁx

2.1, General variational problem, Consideration of the variational
problem of mechanics of flight (1.1) with engines of limited exit
velocity of the jet stream (1,6) showed that taking into account the
influence of the specific gravity of the propulsion system Y = Gu/Pgax
and the specific gravity of construction $ = Gs/Guo the complete varia-
tional problem is divided into a dynamic problem and a welght problem
(G, L. Grodzovskly, 1966-1967). The dynamic (trajectory) problem
boils down to the well-known proolem of rocket dynamics of optimum
motion with an ideal weightless engine of limited thrust determining
the most accessible final weight of the craft:

13



max -‘%.D- - -g:- (Vaaxs Puaxs a0 o0 9y ¥y, T).‘ (2. 1 )

The algorithm of transition to solution of the complete varlational
problem, taking into consideration the weight of the propulsion system
Gn (depending on maximum thrust) and the weight of construction GB
(depending on the reserve of the working medium) 1s shown:

Cu=masxp,,, (1 +B) Gy (Poypa) — YPaus — Gl (2.2)

Examples of solution of model problems about set of maximum
energy during vertical climb and about optimum vertical landing in
a constant plane-parallel gravitational field, about landing from
circular orbit of a satellite and about set of hyperbolic speed
during launch from circular orbit of a satellite showed that, in
spite of small values of specific gravity of an engine of limited
exit velocity, calculation of the weight of the propulsion system
essentlally affects parameters of optimum motion of & body of variable
mass and leads to an extreme problem of determination of engine weight
(maximum thrust) ensuring maximum deliversble payload,

2,2. The dynemic part of the problem., In connection with the
separation shown in p, 2.1 of the complete variatlional problem into
welght and dynamic parts, of fundamental importance are solutions
of the problem of rocket dynamics of optimum motion with an ideal
welghtless engine of limited thrust P (f)&Pp,, ensuring minimum total
increase in characteristic speed, The first works on the problem of
optimization in rocket dynamics belong to 1946. Then A, Yu, Ishlinskiy
showed that the condition of constancy of the speed of the Jet stream
is equivalené to the hypothesis about the fact that during rejecting
of the Jet stream is liberated kinetic energy proportional to the
expended mass q; A, A. Kosmodem'yenskiy and D, Ye, Okhotsimskiy was
investigated in detail the problem of optimum ascent of the rocket
along the vertical to maximum eltitude. These investigations were
further developed in the works of V. V., Beletskiy (1956), V. A, Yegorov
(1958), V. K. Isayev, A, I, Kur'yanov and V. V. Sonin (1964) and
others. Essential was the solution published in 1957 by D, Ye,
Okhotsimskly and T. M, Eneyev (and independently of them by D. F, Louden
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and B, D. Frayd) of the problem of optimum girding of a satellite into
circular orbit. An important result was obtained about the fact that

along the optimum trajectory the tangent of the angle of the direction
of thrust is a linear-fractional function of time

we=517. (2.3)

In a work of Yu. A, Gorelov (1960) were determined the condltions
fulfillment of which ensures extreme motion of a rocket along a
curvilinear trajectory. Composition of optimum control in the problem
of rocket dynamics of motion with an ideal welghtless engine of limited
thrust in a plane-parallel gravitational field was investigated in
detail in works of V. K. Isayev (1961-1962). He showed the effective~
ness of application of the principle of maximum of L. S. Pontryagin
(1961) in the solution of complex problems of rocket dynamics. The
method of L. S. Pontryagin conquered the special popularity in recent
years with which 1s connected the great progress made 1in the whole
world in the solutlon of practical problems of rocket dynamics with
complex limitatlons,

Subsequently the introduction of an extremely successful model
of a uniform central fileld permitted solving the problem of optimum
control of a point of varlable mass in a central gravitational fileld
in the presence of limitation on jet thrust (G. Ye. Kuzmek, V. K.
Isayev and B, Kh, Davidson, 1963). Another important problem about
the turning of the plane of the orbit of a satellite is examined in
detail in works of V. F. Illurionov and L. M. Shkadov (1962), Yu. M.
Kopnin (1965, 1967), Yu. N. Ivanov and Yu. V. Shalayev (1965).

A work of D. Ye. Okhotsimskiy and T. M, Eneyev (1957) also
initiated investigation of the optimum problems of rocket dynamics of
multistage systems. These problems were successfully developed further
in works of K. A. Pobedonostsev (1958), 0. F. Makarov (1962), Yu, V.,
Kozhevnikov (1963, 1965), V. A, Kosmodem'yanskiy (1964), V. A. Troitskiy
(1965), A. A, Bolonkin (1965) and others.
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2,3, Pulse flights. The influence of the weight of the propul-
sion system is immaterially for maneuvers during the fulfillment of
which the time of work of the engine is much shorter than the tlme of
fulfillment of the meneuver, For such maneuvers application of jet
thrust can be considered pulse application,

Optimum trajectories with meny pulses were investigated by V. I.
Charnym (1963), who strictly proved that optimum multipulse flight
consists of arcs of conlc sections touching in apsidal polnts. TIwo-
pulse optimum flight between orbits with small slope and eccentricities
was studled by V. 8. Novoselovey (1963) and optimum coplanar flights
between orbits by S. N. Kirpichnikov (1964). Conditions of optimum
impulse transition of a spacecraft, braked in the atmosphere of a
planet to the orbit of an artificial satellite were analyzed in detail
by V. A, Il'in (1963). Later V. A. Il'in (1964, 1967) and V. S.
Vozhdayev (1967) examined the problem of determination of optimum
trajectory of flight between coplanar clrcular orbits with the use of
the method of spheres of action and obtained simpler algebriac rela-
tionships between the eccentricities and focal paremeters of one- and
two-pulse fiights. One more interesting investigation of V. A. I1'in
(1967) 1s dedicated to the approximate solution of the problem of
synthesis of trajectory of close circling of the moon with reentry of
the atmosphere of earth. In this investigation is successfully used
replacement of spacecraft motion in the sphere of action of the moon
by ‘the "unfolding pulse" of the field of gravitation of the moon,

A complex of problems on optimum pulse flights between orbits
located in a small environment of the base circular orbit, 1s studied
in detail in works of G. Ye. Kuzmak (1965, 1967) and N, I. Lavrenko
(1965, 1967). Anelysis of this case 1s interesting for two reasons:
firsy, small deformations of orbits in the environment of the base
circular orbit lead to radical changes of parameters of pulse clrcults
of flights and, secondly, the region of applicability of epproximate
solutions bullt by such a method is sufficient for investigatlon of
a broad class of circumplanetary maneuvers, Modified parameters in
investigations were moments of application of pulses, their components
and the number of pulses ensuring minimum total increase in character-
istic speed. G. Ye, Kuzmak (1965) by this method solved the
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two-dimensional problem of optimum flight from the initial orbit to

a point lying in the plane of the orbit, and the problem of flights
between arbitrary coplanar orbits, In 1%65 G, Ye, Kuzmak and N, I,
Lavrenko brought also solution of the problem of flights from initiel
orbit to a point lying outside the plane of the orbit, and in 1%67
the same method they examined optimum flights between noncoplanar
orbits,

Optimum three-pulse turn of the plane of a circular orblt was
investigated by L. V. Zakoteyeva and V. V. Polyachenko (1%5).
Optimum orbits of one- and two-pulse flights between points moving
along one orbit were analyzed in detall by S. N. Kirpichnikov (1966).
Pulse flights between different orbits were examined in works of
S. V. Dubovskiy (1964), V. S. Noveselov (19%65), V. V. Ivashkin (1966)
and others,

§ 3. Mechanics of Space Flights with Engines
of Limlted Power

The first works on the problem of optimization in problems of
mechanics of flight with an engine of limited power belong to 1959-
1961 (J. Irving and E, Blum, 1959; G. L. Grodzovskiy, Yu, N. Ivanov
and V. V. Tokarev, 1961). In them were considered the chief features
of the characteristics of such engines: the limitedness of the power
of the jet stream and the dependence of engine weight on maximum
power, The fact of separation of the initisl problem into welight
and dynamic parts was established, Basic properties of optimum
solutions were revealed: the presence of the best distribution ot
starting the weight between engine end the working substance and the
advantage of change of the value of thrust in the process of flight.

Further investigations developed in two directions, The first
is inclusion of the real characteristics of the engine in the formula-
tion of problems of optimization and consideration of modified circuits
of an engine of limited power. The second is solution of problems
of optimization for different maneuvers in gravitational fields close
to real ones. These investigctions are accompanied by the development
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of various kinds of procedures which allow using variational methods
and the constr.ction of approximate and numerical methods of solution
of variational and boundary value problems,

3.1. The ideal engine 1is characterized by absence of losses of
working substance and power, its regulation is governed only by
limitation on power, and the weight of the propulsion system linearly
depends on maximum power (see 1.7) at ¥ =0, guy = o). Study of the
ideal case is interesting because it opens maximum possibilities of
engines of a given class,

Here are examined possible variants of control of engine weight:
constant engine weight (J. Irving and E, Blum, 1959; G. L. Grodzovskiy,
Yu, N. Ivanov and V., V. Tokarev, 1961), stepwise and continuously
variable engine weight (G. L. Grodzovskily, 1961; Yu. N, Ivanov, 1962,
1964), use of dropped sections cof the engine as working substance
(V. V. Tokarev, 1963, 1965). In the first case is performed general-
ization for nonlinear dependence of engine weilght on maximum power
(6. L. Grodzovskiy, 1965).

Let us describe formulation of the variational problem on an
example of the maximum case — continuous discharge of infinitesimal
sections of the engine (é. - — gu (>0) with their partial transfor-
mation into working substance (0<x (f)<xmsx = const<1). Part of the flow
rate 9, equal to (1 - u) Q, is not used and abandons the craft with
zero speed; the remaining part nd,,» transformed into working substance,
is sent to the propelling agent. The total flow rate through the
propelling agent q will be composed of flow rate uq_ and the flow rate
of reserve of working substance q . Having demanded qn(t)
we will obtain the case of constant engine weight; at Mnax =
will have the case of passive discharge of engine sections.

0,
we

o m

Let us connect to the system {1.1) the third of the equations
(1.3) and depict it taking into account engine performance (1.7)
at v=0, gy = oo):

18



Go=—gu Co(0+Gu()=1, Go(T)== max,
é-= —q-. G‘(r)>01
r=v, rO)=re r(D=nr, (3.1)
.V iieN g +ua '
v=—w‘——e+n, t'(o):".. r(T)=-‘,'|
|0(')I-'0 0<N(l)<', 0<“(')<“mxv‘
0<qu()<oo, 0Lqu(t)<<oo )

Here all weights are referred to the initial weight of the craft,
flow rates to the initial mass, and power to the highest possible
[ower at a given moment, The symbol G0 designates total weight

Go (8) = Gx — Gy (D).

It is necessary to select the optimum initial value of weight

Gn and to construct optimum programs for controls e(t), ¥ (8), » (), q. (¢)
and gq,(f). Design parameters — the specific weight of the engine a
and the maximum coefficient Nnax of transformation of the material
of the engine into working substance — are assigned; dynamic maneuver
{ro» ¥ #v #; T} 1s fixed, The maximized functional is the final value
of phase coordinate Gc coinciding in definition with useful weight
Goe

Analysis of the structure of optimum control made on the basis
of the principle of maximum of L, S. Pontryagin (1961) permits in
all cases (1° — gu(8) 53 0; 2° — ¢ (>0, Hmar = 0; 3° — qu (£) >0, 1 >mag > 0O breaking
up the initial variational problem (3.1) into weight and dynamic parts.

The weight part of the problem is solved to the end analytically.
The optimum partition of initial weight between the engine GuO’ the

reserve of working substance Guo, and the payload G, 1s determined,
and the connection between payload G, and the functional

T
0=-;—;¢'dl.

characterizing the trajectory is found,
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For the case of constant engine weight (gu (8) = 0)
Gl=ya;_cl' cl=(‘—V3)’ (0<°<1); (3.2)

for the case of passive discharge (gx()>0, %y =0)

1

VTa—6x ot +<Ga<h
Gu=
T at 0<Gx<“

' (3.3)
A-V®P at 0<O<T.
Ga=
Lep—i0)at <O<oo;

for the case of active discharge (g(8)>0, 15> %,,,>0)

K—C, at C<Gx<, 0<x..,<—'--
Cum and 0<Ce<t, F<*au<t

1 i.
T %mD at 0<6.<C, 0<ﬂ’.g<-§-.

(1 —%med) (1 — ) — %m0 +
$6a—K atC<Ba<t, 0<%au<y

(3.4)

Q= 1
and0<6: <1, -,<n..,<l.

1 . G, i
LC—x..,lnC—mln?'- at 0<ca <C- 0<“ml<7

{ —2%may

(-K-:-;-x..,-l- /'%"‘fnu"i'(’—"-n)aﬂ' C’tu—u.n) ’

Reserve of working substance is calculated as Guy=1—Gr—G\g.
The current values of combining weight G(t) and weight of engine
G'n(t) are expressed through the current value of the integral qt).

Analogous procedure is made in the case of instantaneous discharge

of final sections of the engine,
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The dynamic (or trajectory) part of the problem boils down to
minimization of the integral from the square of rocket acceleration
with differential connections - equations of motion

J=at J(O)=0, J(f)=muia,
. ;=l’. r(0)=r.. f(T)='|' (3-5)
v=e+R, 9(O0)=r, e(T)=r

(6()>0, |e(t)|=1)

or, after exclusion of the latter, to minimization of the integral

functional

T
J-sl'.:—n(r. t)1*dt (3.6)

O =rn r@)=rs r(f)=ry *T)= r;).

An analysis was made of the properties of extremals, and solutions
were analytically obtained of a number of model problems (G. L.
Grodzovskiy, 1961; Yu. N, Ivanov, 1961, 1964; V. V. Tokarev, 1961,
1964; Yu. V. Shalayev, 1964; V. K. Isayev, 1962, 1964; v, V. Sonin,
19672, 194; B, Kh, Davidson, 1964; V. V. Beletskiy and V. A. Yegorov,
1964; L. A. Lebedev and S. A, Sakovskiy, 1964). Detailed numerical
solutions were obtained, and a number of approximate analytic solutions
were built for problems of flight to planets of the solar system and
maneuvers in the vicinity of a planet (G. L. Grodzovskiy, 1961; Yu.

N. Ivanov, 1961, 1964-1955; V. V. Beletskiy, 1964-1965; V. A, Yegorov,
1964-1965; V. G. Yershov, 1965; V. K. Isayev, A, I. Kur'yanov and

V. V. Sonin, 1964; S. A. Pokrovskaya, 19%4; G. B. Yefimov and D, Ya,
Okhotsimskiy, 1965, and others).

3.2, Unregulated engines are characterized by constancy of thrust
and flow rate, only the turning off of the engine 1s allowed, (then
thrust and flow rate are equal to zero), and no limitations are put
on change of direction of thrust, This is the second extreme case

of regulation,
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A variational problem for unregulated engines 1s also divided
into weight and dynamic parts. The latter, in contrast to the ideal
case, contains two engine parameters — initial rocket acceleration
a, =g P/G, and exit velocity V (for dimensionless flow rate B =29/Gy =
= 4a,/¥), but is universal for all types of unregulated engine (Yu., N,
Ivenov and Yu, V, Shalayev, 19%65), The weight part is a problem of
minimization of a function of two variables

G.=mllr.v {G._Gl(P' V)-"VP‘Tn (%. V} (3'7)

and can be solved for every concrete type of engine Gn(P’ V), as
only the solution of the dynamic of the problem Tu(ao, V).

The dynamic part boils down to a variational 1 roblem about the
minimum time of work of the engine Tu at the assigned time of motion
T (or any of its equivalents):

t,=39, &(0)=0, t,(T)=min,
re=r, rO=rn r(N=r, (3.8)
o= ‘::" ¢+ R, o(0)=€n - e(T)=e,

(& p=const, 3()=1 OT 0, [o(n)|=1).

Here 1t 1s required to construct optimum programs of switching
m(Hmﬂ)—WmMgdfwm=mtMemmemdwmmnmnM
thrust vector e(t). '

Although formulation of this problem is suitable for any unregu-
lated engine, solution results are divided into two large classes
(for engines of small thrust and for englnes of large thrust), depending
upon the range of parameters ag and u for which it 1s obtained. The
last remhark touches numerical and approximate analytic solutions.
In the class of such solutions pertaining to engines of small thrust
1§ investigated approximately the same set of maneuvers as for an
ldeal engine of limited power (V, N, Lebedev, 1963, 1%6; B, N.
Rumyantsev, 1963; N. N. Moiseyev, 1966; V. V. Beletskiy and V. A.
Yegorov, 1964 Yu. N. Ivanov, and Yu. V. Shalayev, 1965; Yu. M, Kopnin, 1965;
R, F. Avramchenko, V, M, Bezmenov, V, A, Vinokurov and V, V. Tokarev,
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1957, and others), indeed, less complete numerical results were obtailned
for interplanetary flights,

3,3. Real engines are characterized by the presence of losses of
working substance and power and by limitations to control range and to
resource; furthermore, the weight formula of the real propulsion
system contains several components., In general the problem of
optimization here 1s no longer divided into weight and dynamic parts
and should be solved as an integral problem.

Besides the weight components of the craft, which were considered
in the preceding account, it 1s possible to name still at least two:
the welght of tanks for working substance Gy = BGyo and the weight of
the propelling agent G, = yPpu- The varlation formulation (1.1)
will look thus:

G=—22  CO=6. Ga=G(N—B(G—G(T)— ]

—aN gy — YPgar = DAY,
: Y (3.9)
r=t, r(0)=1%, r(T)=ry,

¢=S iR r@O=r r(M=n -
O<KP()<Pqyyy O0KN(O)<Npan le(®)|=1)

A feature of this problem is that the maximized function G,
depends on limitations Nmax and Pmax’ superimposed on controls N(t)
and P(t) and subject to optimizatior. By introduction of dimensionless
control P(t) = P(t)/Pgas. N (8) = N (§)/Nmy and formal equations Poax =0, Ngag =0
the problem can be reduced to the problems of optimum control without
parameters, for investigation of which we will use the principle of
maximum in the standard formulation (Yu, N. Ivanov, 1954},

Very acute for engines of limited power is the problem of
resource, since the optimum time of work of such an engine coincides
with the whole time of motion of composes a considerable part of 1t,

A general method is developed of solution of variational problems with
a fixed time of control actions, on the basis of which is solved a
number of problems of optimum control of an engine with limited
resonrce (Yu. N, Ivanov, 1963, 1965; V. A. Vinokurov, 1965).
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The idea of the method is the introduction of a new phase coor-
dinate tu — the current time of work of the engine — and a new
controlling function 8(f) =4 or O, responsible for the switching on
(6 = 1) and off of the engine (8 =0). The connection between them 1s
glven by the differential equation ﬂ.==6 with boundary conditions
4 (0) =0, & (N<T, where Tu is the assigned resource of the engine,
In equation (1.1) thrust P and flow rate q are replaced with P56 and
qb:

G=—ggd,  G(0)=Cp  Gn=G(T)—Gy=max,

‘..éo, ’ fq(0)=0, t,.(1‘)<T... (3.10)
r=r, . rO)=ry, r(N)=r,

o=t R, eO=r cD=r.

Here an analysis of optimum control is given, and analytic and
numerical solutions are obtained for maneuvers in force-free and
central flelds.

The formulation 1s given and a procedure is developed of solving
the problem of the best approximation of the continuous law of control
to plecewise-constant control with the assigned and optimum number of
levels. Such a problem appears, for example, in case of application
of an engine with a narrow range of regulation when the ideal program
of thrust requires deep regulation.

The procedure, like the preceding one, is based on the use of
relay controlling functions & () =1 or O, Thrust P is presented in
the form

/ P(m, h)=«...(n,ﬂ.‘l-ﬂz)al‘*'---+"a-’:)5q-!+“rl)°a-l+“u (3'11)

where T, are constant parameters determining the altitude s of levels
of thrust Py=smy+ag+...+%, Py=%a+ ...+ %, ..., Pp=1a, controls
8(@=1,... s—1) are independent. Having placed expression (3.11)

in equations (3.9), it is possible to obtain conditions for optimum
values of parameters T,; the weight of propelling agent yPuax must

be replaced with the sum of the weights of s variously tuned prépélling

agents yIP; = ylin,.
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Further investigation is conducted with the help of the principle
of maximum, Analytical and numerical examples are obtained of solution
of the problem of step approximation of thrust for basic maneuvers
(Yu, N, Ivanov, 1964, 1966),

The features of optimum controls of engines with real regulating
characteristics in the presence of additional limitations on control
parameters (V. K. Isayev, 1962, 19%4; V. V. Sonin, 1962, 1964; B. Kh,
Davidson, 1964; A. I. Kur'yanov, 1964; Yu. N. Ivanov, 19%6).

3.4, Propulsion system related to engines of limited power and
limited exit velocity. A large number of investigations he.e been
conducted on problems of optimization of mechanics of flight with
engines which are modifications of two basic types, and with engines
of other schemes, To them belong:

engines of limited power with batteries of energy, thermel or
electrical (G. L, Grodzovskly, 1965, 19%67; B. N, Kiforenko, 1965-1967;
V. V. Tokarev, 1965);

engines of limited power and limited exit velocity with accumula-
tion of atmospheric gas utilized as working substance (V, V, Tokarev,
1965; Yu, M, Fatkin, 1965, 1967; G. L. Grodzovskly, 1966);

solar and isotope sails (F. A, Tsander, 1924; A. N, Zhukov and
V. N. Lebedev, 1964; K, G, Valeyev, 19%4; G. L. Grodzovskiy, 1966);

engine with solar and isotope sources of energy (A, Ye. Ilyutovich,
1967; R. N, Ovsyannikov and I, N, Semenov, 1967).

§ 4. Additional Aspects of the Problem of
optimIzation In the Mechanlcs of Space

Flight

4,1. optimum combination of engines of various types. Solution
of the problem of optimization does not end with selection of the best(
parameters of a glven type of engine. It is still necessary to clarify

what type of engine 1s sultable to use for executlon of a glven maneuver,
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and to determine the expediency of joint use of various types of engines
on one craft,

Let us assume that on the spacecraft are two engines 1 and 2,
which can work either in parallel or in series, Then the flow rate
g and thrust vector Pe in equations (1.1) are replaced in parallel
operating conditions with

9=q1+¢,. P’.=P10|+P‘O’, ()4.1)
and in series operating conditions with
9=08+0:(1—8), Pe=Pied+Pres(1—9), (4.2)

where 8(t) =1, when engine 1 is on, and 8(t) =0, when engine 2 is on,
Introduction of this relay controlling function permits considering
the controls of engines 1 and 2 independent. The weight of engine

G, in boundary conditions (1.1) is recorded in the form of the sum

G, =Gy + Gy The regularity (1.4) and weight (1.5) characteristics
of engines 1 and 2, as usual, lock the variational problem.

Cases are investigated of parallel and serles operating modes of
engines of limited exit velocity (large thrust) and limited power
(small thrust), and examples are given of construction of the boundary
of the fleld of application of engines of limited power for different
maneuvers (Yu. N. Ivanov, 1964, 1966).

4,2 Modification of the criterion of optimumness. Usually during
the formulation of varietional problems is used the weight criterion
of optimumness — the maximum payload at the assigned starting weight
(dynamic maneuver is fixed),

If the same maneuver is to be performed repeatedly, 1t is expedient
to replace the weight criterion with the cost criterion. The cost of
fulfillment of the maneuver is composed of the cost of achievement of
initial orbit and the costs of the baslc components of the craft; the
latter are considered proportional to the corresponding weights,
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The cost of delivery of a unit of payload is minimized. The
functional of the problem has such a structure:

‘+"‘G"+"‘c”=min. (4.3)

=Gy —

S=
where g8 and s are dimensionless coefficients characterizing the cost
of the engine and the working substance. Minimum is looked for wilth
connections (1,1)-(1.2). As & result optimum controls remain the same,
and the optimum values of constant controlling parameters — weight
relationships, etc., changed (V. V., Tokarev, 1965).

For the purpose of reducing expenditures of designing and develop-
ment of a propulsion system, the problem is posed of selection of
parameters of a universal engine (one or more) ensuring fulfillment
of maneuvers from a certain region B

b=(ry v 1y, o T)EB. (4.4)

The quality of fulfillment of every maneuver b is characterized
by the function x(T) — maximum payload G, or minimum cost S. The
controlling functions of the engine a(t) from (1.4) are selected in
such a manner that connections (1.1) are satisfied and the extremum
of functional x(T) 1s attained:

:ﬁz:ﬂ)=zdb.vﬂ. (4.5)

Engine parameters e besides are fixed, controls u(t) are selected from
the permissible region U and can be different depending upon maneuver
parameters b, The problem of construction of optimum control u(t)
will be considered solved and dependence (4,5) known,

Maneuver parameters b can with frequency v take any values from
fixed reglon B or fixed discrete set B, The frequency v(b) of repeti-
tions of meneuver b is recorded through distribution function F_ (b)
with the help of the integral of Stieltjes ( step distribution functions
are allowed), The frequency v(b€ B') of repetition of maneuvers
belonging so subdomain B’'< B8, 1is equal to
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veB) = § dFu(®) (§ dFy (0)=1) . (4.6)
1] 4 { ]

Vector t of the englne parameters for all values of b€B can
take only one value — the requirement of universality of the engine
for the assigned class of maneuvers, If it is possible for every
maneuver b to select its own system w(b), as in the preceding formula-
tions, then 1t 1s possible to ensure the greatest (least) value of
functional (4.5)

Lrd

st 2 (T) = extrz, (b, «)=5,(0), (4.7)

i.e., the ideal solution. A universal engine will ensure a value of
functional (4.5) less (greater) then (4.7), with the exception of that
maneuver b for which parameters of a universal engine w are optimum in
the sense of condition (4.7):

if max x(T) is looked for,

>0,
BB, )= (B)=2(8: w) {<0. if min x(T) 1s looked for,

(4.8)

The effectiveness of a universal system depending upon the
character of the problem can be characterized either by the functional
averaged from all maneuvers b€ B referred to the ideal value

sy (b, w)dF, (8]

- B
= S (k.9)
{ ]

or by the averaged loss (4.8)

/ asym § |20 ar (4.10)
L

If distribution function Fv(b) is known, then the problem boils
down to detecting extr(':?i) or min (Aii) for parameters w, i.e., to
the problem on extremum of function of several variables (V, V.
Tokarev, 1964, 1966). Solution of the variational problem (4.5) is
considered found for any b€ B and w€ W; otherwise the problem of
universality boils down to the problem of optimum control of the
distributed system (Yu., V. Kozhevnikov, 1966).
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If, however, distribution Fv(b) is now known beforehand, then the
gome epproach is used, Distribution Fv(b) such as would maximize
loss (4.10), and parameters w are looked for guch as would minimize
this loss. In the case of a continuous game and an integrand convex
with respect to w (4.10) the problem becomes one of detecting minimex

wl':::lﬂw‘;lfﬁﬂ-.ﬂ'. (4.11)

Solution of the problem of universalization in such a formulation
determines engine parameters optimum in the following sense: whatever
distribution F (b) of recurrence rate of maneuvers is assigned, loss
(4.10) will not exceed the value found (V. V. Tokarev, 1966; Yu. M,
Fatkin, 1965).

After the parameters of a universal englne are selected, for
every concrete maneuver is determined the optimum reserve of working
substance (V, V. Tokarev and R. F, Avramchenko, 1967).

4.3, Questions of reliabiiity in problems of optimization,
During flight the propulsion system can be acted upon by eccidental
factors causing failures. In accordance with the character of processes
leading failures, the probability of failures can depend on time,
coordinates, engine parameters and craft and on the operating conditions
of the engine, Therefore, calculation of reliability factor leads to
change in habitual programs of optimum control and optimum parameters.,

The intensity of flow of failures, %, is assumed known as a
function of time t, coordinates r, controlling functions u and param-
eters w of the engine:

Aw=A(t, r, u, i) (4.12)
With the assigned probability R it 1s guaranteed that in every
reallzation of maneuver the value of the criterion of quality will

be not less (not more) than the calculated value (for example, the
actual fuel consumption will not exceed calculation).
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In the ca'e of a monosectional engine this condition coincides
with the condition of unfailing work of the engine during the time
of fulfillment of maneuver

T
;x(c. r(1), %(t), w)dt < —InR. (4.13)

To equations (1.1) in accordance with (4.13) is added the equation for
the additional phase coordinate A responsible for reliability

A=A, A(0)=0, A(T)<—IoR, (4.14)

after which the problem a standard problem of optimum control, which
is solved by the method of L. S. Pontryagin,

When the intensity of flow of failures A and the full time of
motion T are great (Amad » 1), then a monosectional propulsion system
cannot ensure an acceptable level of payload with a sufficiently high
probability of realization. 1In this case the propulsion system (or
its most unreliable elements) should be divided into autonomous
sections, Sectlons are considered equivalent; damage of every section
leads to impairment of engine performance (for example, to decrease
in power for engines of limited power), but does not cause cessation
of work of the engine on the whole; all sections work in parallel,
Regulating (1.4) and weight (1.5) characteristics of the engine will
contain now still a number of working sections

P=P(u, w.n), g=q(u. s ), } CRUT)

Gu=Gyu(te, ny), u ()€U, 10 =const.

In order to guarantee here with the assigned probability R
realization of values of functional not less (not greater) than
calculation values, 1t is necessary to construct a law of damages
n(t) (nonaccidental function), which with probability R limits from
below all realizations n(t) (random functions):

Pin(t)>n(t) at 0<t<TI>R (4.15)
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Is proven that at sufficiently high probability R(1—R<¢ 1) condition
(4.45) is fulfilled, law n(t) is constructed in the following way:

n(t)=n.—l at ‘l<‘<"-|v

1t .
: S At (), u(®), wydt= :':f =01, ..., m tmy>7T) (4.15)

Ji

(analog of condition (4,13)). Relationships (4.16) mean that if by
instant t, J sections of n, are damaged, then in the interval (tJ,
tj+1) with probability & not one of the (n, - J) remeining sections
will be damaged.

Relationships (4.14), (4.15) are joined to equations (1,1), A
variational problem is obtained with breeking right parts (n(t) is a
step function) and conditions of isoperimetericness, determining the
position of breaks (integrals in (4.if)),

At a large number of sections (n, > 1) 1t is possible to construct
a continuous approximation of the step law (4,15)

i;=-|:—n-n. n(0)=n,, n(T)=-opt (4.17)

and therby to free from breaks the right sides of equations and condi-
tions isoperimetericness. Integral characteristics with such approxi-
mation ere sufficiently exact, starting with n»,=x 10.

For all stated formulations investigation is made of general
properties of optimum control; analytic solutions of model problems
are obtained, The problem is formulated of finding the optimum
probability R of realization of calculation characteristics (for cargo
shipments); examples of its solution are given (V. V, Tokarev, 1962,
1054, 1956),

4,4, Construction of enalytic solutions close to optimum, Varia-
tional problems appearing in examining problems of optimization lead,
as a rule, to complex systems of differential equations, Finding
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optimum contr:ls and optimum trajectories of motion in analytical
rorm is never or almost never possible, However, analytic solutions
are of speclal interest in connection with their clarity and the
rossibllity of wide parametric analysis,

These indubitable merits served as a base for development of a
different series of procedures and methods of detecting of solutions
in final form. Of course, these solutions are given at a price of
replacement of true gravitational field with a simple one and deviation
from the criterion of optimumness of control. The greatest attention
1s paid to elementary maneuvers with assigned orientation of a vector
of rocket acceleration constant in modulus (F. A. Tsander, 1924-1925;
A, I. Lur'ye, 1962-193; V, F, Illarionov and L, M, Shakadov, 1962;
M. K. Cheremkhin, 1963; Yu. P. Gus'kov, 1963; G. Ye. Kuzmak and Yu,
M. Kopnin, 196%; D, Ye. Okhotsimskiy, 1964; V., V, Beletskiy, 1964; V,
A. Yegorov, 1964; N, N, Moiseyev, 1964, 1966; V. V. Larichev and M.
V. Reyn, 1965; L. D. Nikolenko, 1%5; Yu., G. Yevtushenko, 1966; A. A.
Bolonkin, 1965, and others), A detailed survey of these works belongir -
to a trajectory with a small thrust is contained in a book of G. L.
Grodzovskly, Yu. N. Ivanov and V, V., Tokarev (1966),

4,5, Numerical methods of construction of optimum solutions.
As was already noted, in an overwhelming majority of cases investigation
of the problem of optimization leads to the necessity of solution of
complex variational problems, which is impossible without the use of
effective numerical methods. In connection with this in problems of
mechanics of flight find wide application existing numerical methods
and, on the other hand, during solution of specific problems numerical
methods are developed.

Methods of numerical solution of variational problems are divided
into direct and indirect methods. The former are based on iterative
processes of series decrease (increase) of functional; for applié&tion
of indirect methods the variational problem is preliminerily reduced
to a boundary value problem for a system of differential equations,
Let us be limit ourselves to enumeration of those methods which are
most often used in problems of flight mechanics:
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gradient descent in space of phase coordinates (L. V. Kantorovich,
1945, 1947-1948; B, A, Samokish, 1957; V. A, Brumberg, 1962; Yu. N,
Ivanov, 1964; Yu, V, Shalayev, 196l4, and others);

gradient descent in space of controls (D. Ye. Okhotsimskiy,
1946; L. I. Shatrovskiy, 1962; T. M. Eneyev, 19%63; I. A. Krylov and
F. L. Chernous'ko, 192, and others);

functional method of Newton (L. V. Kantorovich, 1948; G. P, Akilov,
1949; V. A, Vinokurov, 1965; Yu, N, Ivanov, 1965, and others);

finite-dimensional gradient method (I. S. Berezin and N, ¢
Zhidkov, 1961, and others};

finite-dimensional method of Newton (T. M. Eneyev, A. K. Platonov
and R. K. Kazakov, 190; E, L. Akly and T. M, Eneyev, 19%63; M, K.
Gavurin, 1958; V. K, Isayev and V, V, Sonin, 1963, 1965-1366; V. N,
Lebedev, 1963%; B. N. Rumyantsev, 1963, and others);

methods based on dynamic programaing (R. Bellman, 1960; N, N,
Moiseyev, 1964-1965; I. M, Sharonov, 1966, and cthers);

methods based on the principle of optimumness (V. F. Krotov,
1962-193).

§ 5. Mechanics of Entrance of Spacecrafts
into the Atmosphere of a Planet

For a motlon of a spacecraft in the period of re-entry Into the
atmosphere of a planet the appearance of large aerodynamic overloads
and heat flow acting on the craft is characteristic.



Thereforc, already in the first Soviet works dedicated to prospects
of space flight — of S, P, Korolev (1934), F. A. Tsander (see book
1451) and Yu. V., Kondratyuk (1947) — attention was turned to the
importance of investigation of this stage of flight, and recommendations
were contained on guaranteeing the safe lowering of the craft onto the
surface of the planet.

Detailed analysis of trajectories of entrance of spacecrafts
into the atmosphere of planets is given in works of V. A, Yaroshevskiy
(1964-1965), where 1s used a dimensionless nonlinear differential
second order equation connecting altitude and speed of flight. This
equation has the form

1

& o T
= VRim———: (5.4)
where V=V//Rg 1s the ratio of speed to circular speed, Cv is the
coefficient of 1lift, Cx is the drag coefficient correspondiﬁg to
circular speed V = 1, R 1s the radius of the planet, A is the logarith-
mic gradlent of density,

y= Ce (1) § ]/{‘Pv

where S and m are the characteristic area and mass of the craft, p
is the density of the atmosphere, and speed V is connected with variable
x by the relationship

Cs (1) &V
""'E:ﬁ?’f’ (5.2)

’
(T = e* when C, = const), The local flight-path angle 1s determined

by the formula

oy ot S (5.3)

3l



If speed of entrance into the atmosphere is close to circular, then

the solution of this equation in a number of practically interesting
cases can be obtained in the form of a serles of different structure
depending upon the value of the angle of entrance into the atmosphere,
the value of the lift-drag ratio, and the law of change of drag coeffi-
cient of speed, With the help of such a method are investigated
ballistic trajectories of crafts with small lift-drag ratio.

For analysis of trajectories of entrance of crafts with high

lift-drag ratio — glide paths and trajectories with reflections —
is used the method of averaging nonstationary nonlinear oscillations.

If the speed of entrance into the atmosphere exceeds orbital
velocity, then the equation of motion will be converted in such a
way as to obteain approximate relatlonships connecting conditions
of entrance into the atmosphere with parameters of trajectory at
the point of achievement of minimum altitude during the first descent
into the atmosphere, With the help of these relationships is found
a simple approximate formula for the width of the corridor of entrance
into the atmosphere, valid for crafts with not too low a lift-drag
ratio. The reverse problem is examined of finding of the law cof
change of 1ift at an assigned dependence of altitude on flight speed.
Inasmuch as all these solutions are obtained for dimenslonless
variables, the results of work are applicable to trajectorles of
entrance into the atmosphere of different planets.

The trajectories of entrance 1nto the atmosphere of a planet
were examined by Yu, M, Kopnin (1967), Introduction of speclal
variables permitted reducing the problem to series determination of
the trajectory of satellite in a plane of scanning and projection
of the trajectory on the surface of the planet. Approximate solutions
are obtained which allow analyzing the influence of values of 1ift-
drag ratio and angle of roll on parameters of yawing mction, We
consider the reverse problem of determination of the law of change
of angle of roll according to the assigned projection of the space
trajectory on the planet surface.
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A numter of works is dedicated to determination of optimum
trajectorles of entrance into the atmosphere.

D. Ye. Okhotsimskiy and N. I. Zolotukhina (1964) examined

trajectories the 1ift of which takes alternately meximum negative
value and found optimum sequences switchings of 1ift which allow
minimizing maximum overload obtainable on a trajectory of entrance
into the atmosphere. A, A. Shilov and Yu. N, Zhelnin (19%66) investi-
gated the problem of control of 1lift during entrance of a craft into
the atmosphere and established laws of control optimum in the sense
of minimization of maximum overload.

In a work of I. S, Ukolov, Ye. A. Tyulin and E. I. Mitroshin
(1967) 1s examined a scheme for controlling longitudinal distance
of the point of landing of the craft during descent into the atmosphere
haged on analysis of the dimensionless equation of motion., Laws
of switching 1ift are found which ensure a quality of control close
to optimum,

In a work of V. S. Vedrov, G. P, Vladychin, A, A. Kondratov,
G. L. Romanov and V, M, Shalashkov (1966), and also in a work of
V. S. Vedrov, G. I. Vladychin and I. A. Rubtsovoy (1967) are obtained
simple laws of control of a craft on the section of descent into
the‘atmosphere ensuring the fastest removal of a winged craft on a
landing strip.

G. Ye. Kuzmak and V. A, Yaroshevskiy (1964) examined uncontrolled
motion of an exisymmetric-craft around the center of masses during
entrance into the atmosphere. With the help of the method of averaging
of nonlinear nonstantionary periodic motions is analyzed the influence
of initial conditions of angle of attack and angular veloclties on
amplitudes of oscillations of a craft in dense layers of the atmosphere,



§ 6. Motlion of an Uncontrolled Artificial
Satellite with Respect to the Center
of Masses

A number of geophysical and dynamic problems connected with the
study and conquest of outer space requires analysis of the
rotation of an artificial object in outer space relative to its
center of masses. Without such analysis 1t 1s d;fficult correctly
to interpret the readings of Instruments on the satellite; motion
near the center of masses affects orblt parameters and time of
existence of the satellite; there is also a number of other problems
requiring knowledge of the orientation of the satellite in space.
One should especially note the range of questions connected with the
possibility of obtalning a passive orientation of satellites, 1.e.,
orientation caused by the influence of moments of external forces.
Essential in these problems 1is the finding of the natural orlented
positions of the satelllte and analysis of the stability of these
positions and motion in their environment.

Motion of a satellite around the center of masses can be some-
what conditionally divided into two basic types — rotary and
liorational. In the case of rotary motion the kinetic energy of
rotation of a satellite essentially exceeds the work of moments of
external forces and the motion of a satellite in a short interval
of time close to undisturbed motion corresponding to the absence of
moments of external forces. Moments of external forces will put into
motion small disturbances, which, however, can be stored with flow
of time, leading to essential evolutlon of motion. If, however,
the kinetic energy of rotation of the satellite is low as compared
to the work of external forces (or is comparable with it), then
motion of the librational type — oscillation of the satellite near
a certain oriented direction (radius vector of orbit, vector of
magnetic intensity of terrestrial magnetic field, etc.) 1s possible.

Let us note that during investigation of motlon of both types
are wildely ured contemporary methods of investigation — asymptotic
methods of the theory of oscillations, theory of stability, numerical
methods of analysis, etc.
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6.1. Moments of forces acting on a satellite. Investigation
of satellite motlon around the center of masses usually assumes
that the dependence of moments of forces acting on the satellite on
its position and speed of rotation 1s known. These moments in
general depend on a complex manner on satellite configuration,
distribution of masses, properties of the material of which the
satellite 1s made and the physical properties of the space around
the satellite. Therefore, calculation of moments of forceslis an '
independent, sufficiently complex problem. This problem 1s given
much attentlon in works of V. V. Beletskiy (1958-1959, 1963, 1965),
G. N. Duboshin (1958), A. A. Karymov (1962), A. I. Lur'ye (1962-
1963), V. A. Sarychev (1961), F., L. Chernous'ko (1965-1966) and
others. 1In these works model formulas approximating exact expressions

of .ioments of forces are offered or exact formulas for concrete
configurations of the satellite are calculated.

6.2. Equations of motion. During investigation of librational
motion are usually used linear or nonlinear equations of oscillations

in a system of coordinates selected in a sultable manner. As
variables are most frequently used angles of the type of angles of
pltch, bank and yaw. Equations in direction coslnes frequently turn
out to be convenlent for investigation of questions of stability.

It turned out to be a fruitful idea to use as variable
combonents the vector of angular momentum along the fixed axes and
the angles of Euler in a system connected with the vector of angular
momentum. The equations of motlion of a solid in these varlables for
the first time were offered, apparently, by B. V. Bulgakov (1955),
but were developed and found concrete application only with the
appearance of problems of the motion of artificlal satellites
(V. V. Beletskiy, 1958, 1961, 1963, 1965; F. L. Chernous'ko, 1963,
and others). These equations are convenient for investigation by
asymptotic methods and in different forms and modifications are used
for analysis of rotary motlon. Also used are other forms of equations;
for example, in problems connected with numerical finding of motion,
Rodrigues-Hamllton parameters are sometimes used.
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6.3. Stabilization and librational moticn of a satellite 1in a
gravitational fleld of forces. Equations of motion of a satellite 1n
a gravitational fleld in circular orbit allow a particular solution —
relative equilibrium in an orbital system of coordinates. In this
state of motion the main central axes of inertia of the satelllte
colncide with the raldus-vector of the orbit tangent to orbit and
the normal to the plane of the orbit.

In view of the importance of this solution for creation of
systems of passlve gravitational stabilization (D. Ye. Okhotsimskly,
1963; V. A. Sarychev, 1963), the analysis of motion in an environment
of relative equilibrium is the subject of many Works.

V. V. Beletskly (1959) has proven that for stablility of relatlve
equilibrium in circular orbit it 1s sufficiently that in relative
equilibrium the major axls of the ellipsold of inertla of the satellite
is directed according to the radlus-vector of orbit, the minor axls
of the ellipsoid of energy according to the normal to the plane of
orbit and, consequently, the average axis according to the tangent
to the orbit.

The problem of satellite motion around the center of masses is
usually considered in a 1imited formulation: it is considered that
motion around the center of masses does not affect the orbit of the
satellite. In a limited problem the equations of satellite motion
in the gravitational field allow the first intergal — an integral of
the Yakbl type which exists only in ciprcular orblt and can be recorded
in the following form (V. V. Beletskly, 1959);

AP+ B +Cri 430 (A=C)v*+(B—=C)y* +
. + ot [(B—A4) P +(B—C) Bl =hy. (6.1)

Here w is the angular velocity of the motion of the center of masses
of the satellite; §, d, and T are components of the relative angular
velocity of the satellite along its maln central axes %, 4, k,which
correspond to the main central moments of inertia, A. B, and C:
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pmee), Y=l Bm(m) B =(en)

where e, 1is a unit vector in the direction of the radius-vector of
the orbit, and n 1s a unit vector of the normal to the plane of the
orbit. In a position of relative equilibrium £ |in, k[le,,§=?i=7—;y=
= ¢y =mp=p"=0. This motion, as follows from (6.1), is stable if

B>A>C, (6.2)

what exactly gives the above-indicated stable distribution of the
main central axes of inertia of the satellite.
'

Analysis of small space osclllations of a satellite in circular
orbit (V. V. Beletskly, 1959) showed that, besides the shown sufficlent
condition of stability, there 1s a reglon of values of moments of
inertia, in which necessary conditions of stabllity are fulfilled
(motion 1is stable in linear approximation). In this region the
ellipsoid of inertia is close to an oblate spheroid located in
relative equilibrium by its least axis according to the tangent,
and by the biggest axis according to the normal to the plane of the
orbit; average axis, close in value to the blggest axis, 1s located
according to the radius-vector of the orbit.

In elliptic orbit relatlve equilibrium does not exist, but
an analogous important role is played by stable periodical osclllatlons
near the direction of the radius-vector of the orbit. In special
detail are investigated oscillations in the plane of the orbit
described by the equation (V. V. Beletskly, 1959)

(i+ceow)0'—2ulnv6’+n'ain6-4ui.nv (6.3)

(o= w=2459).

where cos 6 = k- an independent variable is true anomaly vi{e is
orbit eccentricity). Application of asymptotic methods to analysis
of this equation permits obtalning integral curves describing
motion in an amplitude-phase plane (F. L. Chernous 'ko, 1963;

V. V. Beletskly, 1965), playlng in analysis of nonautonomous
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oscillations a role analogous to the role of a phase plane for a
conservative autonomous system. For example, at small e the solution
of equation (6.3) 1in the nelghborhood of the main resonance is in

quasi-hax‘monic form:
d=a(v)cos V+" v}

where the variables of amplitude a(v) and phase %(v) of oscillations are
connected by integral

{] t ]
-:l uinu+n['T—J.(¢)+i]——'2—=const. (6.5)
which allows investigating motion 1n an amplitude-phase plane (s, x).
In (6.5) Jo(a) 1s a Bessel function of zero order. The 2n--periodical
solutions of equation (6.3) correspond to statiocnary points of
integral curves (6.5), in which

= i ’~ﬂ

0=t asiny, ndzx TR (6.6)
where Jy(a) is a Bessel function of the first kind of the first order,
The 2n-perliodical solutions will be one (stable) or three (two of

them stable, one unstable), if

Dgg_(%)”’(_'"_%'ﬂz>o or D<0 (6.7)

(V. V. Beletskly, 1965). F. L. Chernous'ko (1963) examined an
asymptotic solution of equation (6.3) both at low e, and at any e,
but low nl. In the latter case 1is revealed, in particular, replace-
ment of the stability of a 2x-periodical solution at e>0,682,

when the solution responding to n?*< 0 becomes stable; moreover, 1in
the perigee the axls of the least moment of inertia is directed
according to the tangent to the orbit. If however, e<<0,882, then
the perilodical solution with which in the perigee the axls of the
motion of inertia is directed according to the radius-vector (s*>>0)
is stable.
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In general analysis of perlodical solutions of the equation of
rlans oscillations in elliptic orbit was made by numerical methods,
which permitted obtaining a complete picture of regions of existence
of stable periodical oscillations at any value of eccentricity of
elliptic orbit and any moments of inertia of satellite
(V. A. Zlatoustov, 1964; D. Ye. Okhotsimskly, 1964; V. A. Sarychev,
1964; A. P. Torchevskiy, 1964). Investigation of the equaticn of
plane osclllations in elliptic orbit 1s the subject also of a work
of V. V. Beletskly (1963), I. D. Killya (1963-1964) ard
A. P. Torzhevskiy (1964).

If the satelllite possesses dynamic symmetry, then in
circular orbit exist such motions (regular precessions with respect
to the normal to the plane of orbit), when the axis of symmetry
remains fixed in a rotating orbital system of coordinates. The axis
of symmetry 1s normal elther to the radius-vector of thc¢ orbit or to
the velocity vector and composes a constant (in particular, zero)
angle wilth the normal to the plane of orbit.

These stationary motions, discovered by G. N. Duboshin (1959-
1960) and V. T. Kondurar' (1959), were investigated for stability by
F. L. Chernous'ko (1954), who found a reglon of sufficient conditions
of stabllity and a region of necessary conditions of stability.
A. P. Markeyev (1965, 1967), using the results of A. N. Kolmogorov
and V. I. Arnol'da about stability of motion in canonical systems
showed that 1n the region of necessary conditions of stability motion
1s stable everywhere, except, perhaps, a set of value of parameter
having zero peasure.

Application of asymptotic and numerical methods permitted
A. P. Markeyev to investigate in detail motion in the vicinity of
shown stationary motions both in circular and in elliptic orbits.
V. A. Sarychev (1965) obtained conditions of asymptotic stability of
stationary motions of a symmetric statellite equipped with a damping
device.
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6.4, Stabilization and librational motion of a satellite under
the impact of moments of forces of a nongravitational nature.
Aerodynamic forces can elther perturb gravitational stabllizatlon or
to promote it. Of fundamental interest is purely aerodynamic
stabilization according to the velocity vector of the center of masses

of the satellite, The moments of forces of light pressure can
stabilize the satellite with respect to the direction to the sun,

and moments of magnetic forces with respect to the vector of the
magnetic fleld strength of earth. Also of interest is the question
of magnetic disturbances of gravitational stabillzation, Joint
influence of moments of forces of light pressure and gravitatlonal
forces, etc. Librational motion under the impact of moment of forces
of a nongravitational nature was studled by 0. V. Gurko and

L. I. Siabkiy (1963), A. A. Karymov (1962, 1964), V. A. Sarychev
(1964), V. V. Beletskiy (1965), A. A. Khentov (1967) and others.

6.5. Rotary motion. If the moments of acting forces have a
force function, then the first approximation to the motion (in the

asymptotic sense) 1s cbtalned by averagling the force function accord-
ing to undisturbed motion, and also, perhaps, according to the orbital
motion of the satellite. The satellite accomplishes undisturbed
Euler-Poinsot motion relative to an angular momentum vector constant
in magnitude; motion of the angular momentum vector itself is
described by two canonical equations (V. V. Beletskiy, 1963);

v U do .
%=—L.|iin' v Lgsinp dp - (6.8)

Here L, is the modulus of the vector of angular momentum, constant in
the =xamined approximation; ¢, and @ are two angles determining the
position of the vector L of angular momentum in fixed system of
coordinates; U =T (@ # 1s the average value of the force function.
From (6.8) it is obvious that trajectories of the vector of angular
momentum are determined by the integral of eguations (6.8)

U (p, 0) = const. (6.9}
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If the orce function 1s averaged only for Euler motion, then
in equations (6.8) U depends still on true anomaly ¥, integral
(6.9) does not exist, but motion g 1is determined by (6.8) in more
exact form, where for a number of impcrtant cases equations (6.8)
with U« U(p, 0, v) can be accurately integrated (V. V. Beletskly,
1963, 1965). Thus, for example, in case of gravitational disturbances
the vector of angular momentum accomplishes slow precession
around the normal to the plane of the orbit at almost constant angular
distance from it (V. V. Beletskiy, 1958, 1963, 1965;
F. L. Chernous'ko, 1963). If the satellite possesses dynamic
symmetry, then

P="Fe “‘}":' %(‘—%ﬁnw)mm- (6.10)

where here ¢ 1s the angle between I and W, ¢ 1s the angle of
rotatlon L around m, ®¢ 1s the frequency of revolution of the center
of masses of the satellite along the orbit, # =49, 1s the constant
nutation angle (between L and the axis of symmetry & of the
satellite). With respect to the L the dynamically symmetrical
satellite accomplishes regular precession.

The described picture of motion corresponds only to nonreso-
nance cases. If however, between characteristic frequencies of
motion 1s a relationship close to resonance, then the picture is
complicated and in the first approximation appear disturbances 1in the
motion of the vector of angular momentum, 1in the magnitude this vector
and In motion with respect to the vector of angular momentum, as
discovered by A. P. Torzhevskly (1967) for the case of gravitational
distrubahces. For example, 1n the case of fast rotation of s body
with a triaxial ellipsold of lnertia during commensurability of the
two main Euler frequencles of undisturbed motion, it turns out that
the vector of angular momentum L precesses around the normal to the
plane of the orbit (analogously the nonresonance case) and, further-
more, accomplishes nutational oscillations (by angle ) relative to
the normal to the plane of the orbit; during these oscillations L
and p change so that
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Lﬂlp-eonst. (6.11)

V. V. Beletskly (1958, 1961, 1963, 1965, 1967) investigated
rotary motion of a satellite under separate and Joint influence of
forces of a different nature — gravitational, aerodynamic, magnetlic,
light pressure, dissipative forces (aerodynamic friction, eddy
currents in the shell of the satelllte); the Influence of the
varlability of the orbit of the satellite and other factors was

examined.

Let us note certain maln effects of rotary motion, making
the simplest assumptions about the structure of perturbing moments for
a dynamically summetric satellite. Aerodynamic disturbances cause
precession L at a constant angular distance ¢ from the direction
parallel to the vector ¥Fa of the speed of the center of masses of
the satellite in the perigee of the orbit. The speed of precession

shown 1is

=
a 1 o (e+cosv) Viret+2ecosv
Batrogiend (Ni= ;; oot dv) .

(6.12)
Here ¢x = VaRa 1s the constant of areas of orbital motion {Rs 1s the
perigean radius of the orbit), p 1s the current density of the
atmosphere, g 1s the density of the atmosphere in the perigee of
<he orbit, e =a8l 1s the coefficient of aerodynamic moment
proportionai to the product of the characteristic area of the
satellite § and its characteristic dimension 4

Through the action of constant axial magnetic moment [, of
the satellite, vector L precesses with a speed of difdv at a
constant angular distance « from the pole, the direction to which 1is
the angle p; with tne directlon of the axls of earth and 1s contained
in a plane normal to the nodal line. Given this,
3sin?i—2

I -
o= Sien | dn = Ty cos 0 VT 3cosTi, (6.13)

where p 1s the focal parameter of the orbit, i 1s the orbital
inelination to the equator, Me is the magnetic moment of the magnetic
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fleld of earth (assumed dipole and coaxial with the axis of earth).
Mction relative to vector I 1is not destroyed. In particular, in
(1,12)=(6.13) nutation angle ¢ =40, 1s constant.

" Analysis of experimental data has shown that effects of type
(6.10) and (6.12)-(6.13) dominated for the third Soviet satellite
(V. V. Beletskiy, 1961, 1965; Yu. V. Zonov, 1961) and the "Electron-
2 satellite (E. K. Lavrovskiy, 1967; S. I. Trushin, 1967) and
others.

During nonconservative influences 1s destroyed also motlon with
respect to L. Thus, panels of solar batterles skew-symmetrically
installed on the satellite create in a flow of rarefled gas a
propelling moment untwisting the satellite and causing a number of
other effects. The model of such motion on the average possesses
the property of preserving values

Lain®(ctgd)®=1Y, (1g20)* cos ¥ sind 0, =c,. (6.14)

The constant coefficlent a < 0.5 depends on the aerodynamic properties
of the satellite. Integral curves (6.14) permit showing that the
satellite can (in a long period) sharply change the state of motion,
emerging from conditions of twist (0 =0) to conditions of tumble
(0 ® n/2) and back. Together with this 1s changed angle §, between
vector L and direction V5 and the value of modulus L oscillates,
Such effects, as analysls of experimental data shows, dominate 1n
the motlon of satellites of the "Proton" type (V. V. Beletskly,
1967; V. V. Golubkov, 1967; I. G. Khatskevich, 1967).

/

Dissipative effects along with damping of angular velocities
lead as a rule, in the 1limit to rotation of the satellite around the
axis of the greatest moment of inertia (so that the stretched satellite
1s overturned, and the compressed one is stabilized).

The influence of triaxiality of the ellipsoid of inertla of
the satelllte on its rotary nonresonance motion 1s investigated for
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gravitational moments by F. L. Chernous'ko (1963) and for aerodynamic
moments by Yu. G. Yevtushenko (1964-1965) (by averaging of equatlons
on Euler motion on the basis of a scheme proposed by

F. L. Chernous'ko).

A number of effects of rotary motion was revealed by Yu. V. Zonov
(1959) (eddy currents) and A. A. Karymov (1962, 1964) (ligh
pressure).

A description of certailn pasic effects of rotary motion of the
satellite is contalned in a book of A. I. Lur'ye (1962) and for
L. I. Sedov (1958).

6.6. The influence of moments of forces of internal nature
on satellite motion. N. N. Kolesnlkov (1962) showed that conditions
of stabllity of relative equilibrium of a satellite as a solid body
preserve their form also for a satelllte having a cavity wholly
filled with viscous liquid. He examined certain satellite problems

in the presence of gyrostatic moment (196" 1966).

F. L. Chernous'ko (1965-1966) investigated 1n detail the
problem of motlon of a body with a cavity filled with viscous 1liquid,
at low or, conversely, at high Reyrolds numbers. This problem was
examined also in works of B. N. Rumyantsev (1964),

P. S. Krasnoshchekov (1963) and others. Such an investigation may
also be applicable to analysils of satellite motion.

Let us assume that, for example, g, satellite contains a
spheric cavity of radius a filled with viscous liquid with density
po and viscosity v and moment of external forces is absent. Then
at low Reynolds numbers Euler equations of satellite motion have
the form (F. L. Chernous'ko, 1965)

4|
AL +(C—Bar=

. e PIC(A—O(A+C--B)F + BUA—B)(A+B--O ) (6.15)
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where two other equations are obtained by cyclic permutation of the

letters A,PJb.p.n.r (here p.-=5%§aaﬁ. By virtue of equations (6.15)
the value L of the vector of angular momentum is preserved, and
kinetic energy T monotonically decreases. The satellite tends
toward rotation around the axis of maximum moment of inertia. 1In

the case of a dynamically symmetric satellite the characteristic time
of the transition process 1s

vAY
Tom qntiia=ct - (6.16)

V. N. Borovenko (1965) and B. A. Smol'nikov (1966) examined
the influence on satellite motion of the rotating bodies in 1it.
The latter examined motion in Euler angles relative to the total
constant vector of angular momentum L of the body and flywheels;
the trajectory of the total vector of angular momentum relative to
the main central axes of inertia of the body 1s given by the integral
of energy of motion

(4 (524 55) o+
<+ 2R {sin vy 8in O cos (¢ —jiy) + cOs v cos 8] = const, (6.17)

where ¥ and @ are Euler angles of normal rotation and nutation,
but v, and Me are angles determining the position in the body of
angular momentum of flywheels constant with respect to the body,
and R 1s determined by the value of thils angular momentum.

Use of rotating masses for introduction of a satellite to
conditions of passlve stabllization (V. A. Sarychev, 1967) has
essential applied value. Analysis of the influence of elasticlity of
construction of a satellite on its motion 1s the subjJect of a work
of V. I. Popov (1965), V. Yu. Rutkovskly (1965), and
?. V. Kharitonovoy (1966).

6.7. On interconnection of translational and rotary motions.

Motion with respecto to the center of masses and motion of the
center of masses 1tself, generally speaking are interconnected. It
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is clear, for example, that the orbit of a nonspherical satellite
depends due to atmospheric drag on the orientation of the satelllite;
on the other hand, change of orilentation depends on orbit parameters.
Certain questions of interconnection of rotary and orbital motion of
a satellite 1in atmosphere were examined by Yu. G. Yevtushenko

(1965); V. V. Beletskiy (1965) defined the idea of effective drag
coefficient, which permits taking into consideration the influence
of evolution of rotation of the satellite on 1ts orbital motlon.

An especlally large number of works 1s dedicated to analysis
of interconnection of translational and rotary motlon of a satellite
in a gravitational field. Here one should note a large cycle of
works of V. T. Kondurar' (1959-1963) and works of G. N. Duboshin
(1958-1960), in which, in particular, are given general equations
of translational-rotational motion of many gravitating bodies. A
number of effects of interconnectlon of translational and rotary
motion in a gravitational field 1s examined in the works of
V. V. Beletskly (1959, 1963, 1965), M. S. Volkov (1962-1963) and
others.,

6£.8. Determination of actual orientation of satellites

according to measurements. Readings of various sensors on the
satellite permit obtaining information about actual satellite
orlentation and about actual moments of forces acting on it. For
this purpose readings of magnetometers are used, sun sensors, and
sensors of angular velocities; and lon traps; data on modulatlon of

radio signal, etc.

Since measurements are taken with certain errors, the natural
apprecach to determination of orientation is satistical treatment of
measurements. If at a fixed instant a sufficient quantity of
various measurements 1s necessary, then this permits determining
orientation by the local method without knowing anything beforehand
about the motion of the satellite near the center of the masses.
But usually a sufficlent quantity of measurements 1s dispersed over
a considerable interval of time. In this case orientation can be
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determined only by the integral method, using the whole sum of
information for construction of any model of motion. 1In connection
with this the role of models of motion of a satellite near the

center of masses 1s important. As such a model it 1s possible to take
undisturbed motion, differentlal equatlons of motion, etc.

Algorithms of statlistical data processing are usually 1terative.
Therefore, a large role 1s played by methods of obtaining zero
approximation to satellite motlion. Thils zero approximation i1s usually
obtained from the same information which is later used 1n statistical
treatment. 1In parallel with determination of orientation 1s possible
determination of moments of forces acting cn the satellite,
Development of methods of determination of orientation and determina-
tion of orlentation of a number of Soviet artificial satellites are
the subjects of a work of V. V. Beletskiy (1961, 1965, 1967),

V. N. Borovenko (1967), Yu. V. Zonov (1961), V. V. Golubkov (19€7),

I. G. Khatskevich (1967) and others, among which we will note works
dedicated to determination of certain parameters of rotation and
orientation of satellites according to optical observations for

change of their brightness (V. M. Grigorevskiy, 1961, 1963).

6.9. Books and monographs. To questions of motion of a
satellite around the center of masses 1s dedicated a book of
V. V. Beletskly which appeared in 1965. Individual problems of
dynamics of satellite rotation are examined also in books of
K. G. Bebenin (1964), A. I. Lur'ye (1962), N. N. Moilseyev and
V. V. Rumyantsev (1965).

6.}6. Remark. In the present paragraph no mention is ever
made of important questions of dynamics of guided motlon of a
satellite around the center of masses (or of passive stabilization
of satellites, which 1s the subjJect of the next paragraph). Some
work on these subjects was carried out by K. G. Bebenin (1964),
M. 2. Borshchevskiy (1966), E. V. Gaushus (1963), I. V. Iosiovich
(1966), V. P. Legostayev (1966), D. Ye. Okhotsimskly (1963),
B. V. Raushenbakh (1960, 1966), V. A. Sarychev (1963-1964, 1967),
B. A. Smol'nikov (1964), and Ye. N. Tokar' (1960).
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§ 7. Passive Methods of Stabilization
of Artificlal Safellites

One important trend in the tcchnology of space flights is
creation of orlented artificiel earth satellites. Solution of
this problem permits carrying out scientific experiments requiring
orientation in interplanetary space, return to earth of the satellite
or holder with the results of these experiments, creation of a
system of relay catellites utilized for purposes of global radio
communicetions and television, launching of meteorological and
geodetic satellites and others. Depending upon the problem at hand
orientation of an artificial satellite can be carried out with the
use of active or passive methods,

For active methods of orientation is necessary the presence
on a satellite of orientation sensors and action elements ensuring
controlling moments and supporting assigned orientation of the
satellite in space. Active systems of orientation are used if it
is necessary: 1) to ensure very high accuracy of orientation,
2) to counteract large perturbing moments, 3) and to accomplish a
complex program of turns around the center of masses of the satellite.
Active systems of orientation require considerable consumption of
power and (or) worklng substance and, as a rule, are intended for
a comparatively short time of work,

For projects of satellites without complex program maneuvers,
with a long time of existence and accuracy of orientation of the
order o1 1-5 application of passive systems of stabilization of
satellites, it is possible to use the properties of gravitational
and magnetic fields, the effect of atmospheric drag and light
pressure, gyroscoplic properties of revolving bodies and others,

7.1, Systems of gravitational stabilization, Of systems using

environment properties the most popular are systems of gravitational
stabilization of satellites. The principle of stabilization in
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these systems 's based on the following, well-known property of a
central Newtonian field of forces: a satellite with unequel main
central moments of inertia has in circular orbit four stable positions
ot equilibrium corresponding to the coincidence of the biggest axis

of the ellipsoid of inertia of the satellite with the radius-vector
and the least axis with the binormal to the axis,

Strict proof of the stabllity of positions of satelllte
equilibrium based on use of the second method of Lyapunov was glven
by V. V. Beletskly (1959). 1In reference to the moon, which is an
example of natural gravitational stabilization of a body relative
to an attracting center, necessary conditions of stability of
equilibrium positions were obtained in classical celestial mechanics
by Z2h. L, Lagranzh,

During practical realization of these ideas in systems of
gravitational stabilization of satellites appear certain difficulties,
The first difficulty is connected with the necessity of damping
natural satellite oscillations with respect to the position of
stable equilibrium. To ensure damping of naturel oscillations the
satellite is fulfilled in the form of two parts united by nonrigid
connection — satellite and stabllizer. Damping is introduced into
the system with use of relative mobility of satellite and stabilizer,.
The construction of the suspension connecting the satellite with
the stabilizer is the most complex element of the system of gravita-
tional stabilization,

A second difficulty appears because of ambiguity of the position
of stable equilibrium of the satellite, If the satellite after
damping of natural oscillations should occupy an assigned stable
2aquilibrium position, and angles and angular velocitles of the
satellite in initial moment after separation from the last stage
of the carrier rocket are too great, then they must be decreased
with the help of a system of preliminary calming values excluding
transition of the satellite from one stable position of equilibrium
to another. Another solution of the problem is to calm down the
satellite in any equilibrium position and already after calming to

cransfer it with the help of a program turn to assigned equilibrium
position.
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A third difficulty is caused by & low value of gravitational
turning points and the necessity in connection with this of taking
special steps to decrease different perturbing influences in order
to ensure high enough accuracy of satellite orientation,

The first scheme of a system of gravitational stabilization
of artificisl satellites was proposed in 1956 by D. Ye. Okhotsimsitly
(1963). 1In this scheme to the body of the satellite with the help
of & ball joint is Joined a stabilizer carried out in the form of
two rods identical in length rigidly fastened with each other
with equal loads on the ends., The position of the stabilizer with
respect to body of the satellite is fixed by centering springs.
The parameters of the stabillizer (length of rods, weight, angle of
opening between rods) are selected in such a way as to ensure the
necessary parameters of the ellipsoid of inertia of the satellite-
stabilizer system. Relative motion of satellite and stabllizer
is used for introduction in system of linear damping members.

During investigation of the dynamics of this scheme of a system
of gravitational stabilization Vv, A, Sarychev (1961; 1963) obtained
the necessary and sufficient conditions of asymptotic stabllity of
the position of equilibrium of the satellite-stabllizer system,
investigated forced oscillations of a system in elliptic orbit and
examined the possibility of decreasing the duration of the transition
process during extinguishing of natural satellite oscillations.

The necessary and sufficient conditions of asymptotic stability
of the position of equilibrium of the satellite-stabilizer system
are comperatively easily obtained in general form by plotting the
[yapunov function, the role of which is fulfilled by the Hamiltonian
function of the system. The only difficulty is connected with the
fact that the derivative from the Lyapunov function by virtue of
equations of motion is only a fixed, and not a definite function;
therefore, the theorem of the second method of Lyapunov cannot be
used in this case without additional investigation,
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Necessary and sufficient conditions of asymptotic stability
of equilibrium position lead to the following requirements:

1) 1in the equilibrium position the satellite-stabilizer system
should be gravitationally stable, i.e,, the axils of the least
moment of inertia of the whole system should coincide with the
radium-vector, and axis of the greatest moment of inertia with the
binormal to the orbit,.

2) the values of moments of forces of elasticity counteracting
the destabilizing gravitational moments have to be limited from
below;

3) at no values of the parameters should the derivative from
the Hamiltonian function of the system identically turn into zero,
which signifies the absence of such solutions, when the satelllte-
stabilizer system accomplishes oscillations as & solld body without
energy dissipation,

Depending upon the construction of the satellite-stabilizer
system and the altitude of orbit can appear the necessity of
calculation of atmospheric drag. The influence of drag on circular
orbit boils down to change of satellite equiligrium and appearance
of forced oscillations with respect to angle of roll and yaw. By
selection of the scheme (V. A. Sarychev, 1961) it is possible to
leave constant the position of equilibrium and to use reducing
serodynamic moments with respect to angles of yaw and pitch for
weakening of requirements made on the relationships between the
moments of inertia of the system.

Necessary and sufficient conditions of asymptotic stability
of natural oscillations of a system in circular orbit, taking into
account atmospheric drag, are obtained by plotting the Lyapunov
function. The stability of the satellite-stabilizer system in roll
as before 1s determined only by gravitational moment, it becomes
possible to ensure (or to strengthen) stability in pitch and yaw
by aerodynamic moment.



Due to the rotation of the atmosphere together with the earth
with respect to angles of yaw and roll appear forced oscillations
with a frequency equal to the frequency of revolution of the center
of masses of the system along the orbit. The amplitude of these
oscillations is proportional to the angular velocity of rotation
of the earth and the sine of the angle of inclination of the orbit.

It is necessary to note that in principle the influence of
atmospheric drag on oscillations of the satellite-stabilizer system
can be excluded by selection of stabilizer parameters,

During derivation of the equations of motion of a satellite-
stabilizer system with a suspension with three degrees of freedom
it was clarified that small oscillations of the system by angle of
pitch (in the plane of the orbit) do not depend on angles of roll
and yaw, when oscillation with respect to angle of roll and yaw
are interconnected and do not depend on pitch angle. This fact
permitted transferring in construction of the satellite-stabilizer
system to a suspension with two degrees of freedom, but then,
having become free from the symmetry of a scheme leading to independence
of oscillations in the plane of the orbit because of angles of roll
and yaw, to suspension with one degree of freedom (V. A. Sarychev,
1964). Asymptotic stability of the equilibrium position of the
system with respect to all angular variables can be ensured, in
spite of partial dissipation., Decrease of the number of degrees
of freedom of the suspension permits considerably simplifying the
construction of the satellite-stabilizer system.

In circular orbit in a medium without drag natural oscillation
fade with the passage of time and the satellite-stablilizer system
transfers to a position of stable equilibrium. In elliptic orbit
there is no equilibrium condition, The system accomplishes in the
plane of orbit forced (eccentric) oscillations caused by irregularity
of rotation of the orbital system of coordirates., The amplitude of
eccentricity oscillations is proportional to the value of the
accentricity of the oruit arnt tepends on the {nertial charecteristics



of the system and the coefficients of friction end elasticity

(V. A. Sarychev, 1961, 1963). 1In the absence of frictlon in the
system it 1s possible so to select the parameters of the stabilizer
that in elliptic orbit the amplitude of eccentricity oscillations

of the satellite will be equal to zero., In this case the stabilizer
plays the role of a dynamic dqmper of oscillations. Eccentricity
oscillations are easily calculated and can be considered during
treatment of results of experiments conducted on the satellite.

Errors of the system of gravitationel stabilization (V. A, Sarychev,
1961) are determined by errors of system manufacture and external
perturbing moments. Appearance of errors of manufacture are caused
by the following circumstances:

l) error in determination of center of masses,

2) error in determinetion of directions of main dynamic
axes,

3) error in reckoning zero of moments of elastic forces,

These errors randomly affect'system parameters, During investigation
of accuracy of satellite stabilization, of the highest interest are
deviations of paraméters from the selected nominal values which

lead to & nonuniform system of differential equations of motion.
Slight deviations of parameters not changing the uniform form of
equations of motion can only insignificantly change the transition
process and the characteristics of steady motion in elliptic orbit.

It is possible comparatively simply to obtain evident analytic
dependences connecting accuracy of satellite stabilization with
errors of system manufacture., Analysis of these dependences shows
that in weakly elliptic orbits static errors are basic. The
amplitude of periodic errors determined by ellipticity of orbit has
a higher order of smallness.



Basic external perturbing moments, the influence of which
must be taken into account in evaluating the accuracy of systems of
gravitational stabilization, are caused by atmospheric drag, the
magnetic field of earth, ellipticity of orbit, light pressure, etc.
The action of these moments leads to disturbance of the position
of equilibrium of the system and appearance of forced oscillations,
the amplitude of which is determined by the value of disturbances.

The dynamics and accuracy of systems of gravitetional stabilization
are essentially influenced also by effects connected with nonrigidness
of elements of satellite construction (V. I. Popov, 19653
V. Yu. Rutkovskiy, 1965; T. V. Kharitonov, 1966), especially 1f one
considers that the length of a rod with a load at the end utilized
to ensure the necessary reducing gravitetional moments can reach
tens of meters,

Different systems of gravitational stabilization of artificial
satellites differ basically in methods of demping of natural
oscillations. Damping can be completely passive, semipassive and
active,

In purely passive circuits (D. Ye. Okhotsimskily, 1963;
V. A, Sarychev, 1963) with the use of relative motion of nonrigidly
connected satellite parts is introduced linear damping. Practical
realization of linear damping is possible, for example, in the form
of a magnetic damper the action of which is based on the use of
eddy currents, a liquid damper, etc.

An example of a semipassive aamping circuit (Ye. N. Tokar’',
1966; V. A, Sarychev, 1967) is a gyrodamper consisting of a pair
of two-axis gyroscopes, the axis of rotation of rotors of which in
the equilibrium position of the satellite are located symmetrically
with respect to the normal to the plane of the orbit, Natural
osclllations of the satellite cause precession of rotors of gyroscopes
connected with the damping device, trat leads to energy dissipation
of the system, In @ semij@ssive clrcult corparatively low energy
.ontent 1s expanded only keepin,s the speed of rotation of the rotors of

'he . roscopes constant,



“on
In systems of gravitational stabilization with active damping
the extinguishing of natural satellite oscillations relative to the
orbital system of coordinates is carried out with help of an active
system, including sensitive and action elements, and only turning
points are ensured through the properties of the gravitational
field of earth,

The theory of systems of gravitational stabilization of
ertificial satellites is developed in reference to earth as to an
attracting center. However, all the basic results (conditions of
stabllity, eccentricity oscillations, duration of transition process,
expressed in number of revolutions of the satellite along the orbit
and so forth) are preserved for the moon and the planets of the solar
system. The difference appears only in evaluating the influence of
perturbing moments and calculation of conditions specific for a
concrete planet (for example, practical absence of magnetic field
for the moon).

7.2, Systems of aerodynamic stabilization. In circular and
weakly elliptic orbits in the range of altitudes from 250 to
350 km for orientation of the axis of symmetry of a satellite with
respect to incident flow, the direction of which differs little
from the direction of the tangent to the orbit, it is possible to
use aerodynamic moments, If the satellite is aerodynamically stable,
then with the disturbance of normal orisntation appear turning points
in pitch and yaw tending to combine the longitudinal axis of the
satellite with the velocity vecter of leading flow. For removal
of uncertainty of turn of satellits in roll (around the longitudinal
axis) it is possible, for example, to place in the body of the
satellite a rotor rotating with zonstant angular velocity around
an axis perpendicular to the axis of symmetry of the satellite.
Gyroscopic moments appearing during rotation of the rotor tend to
advance the axis of the rotor with respect to the normal to the
plane of the orbit,

An example of a satellite with an aerodynamic to be (to be more
exact, serodyroscopic) system of stabilization is the "Kosmos-149,"



satellite launched 21 March 1967 into an orbit with an altitude of
perigee of 248 km and an altitude of apogee of 297 km and an
inclination of the plane of the orbit to the plane of the equator

of 48° (A. M. Obukhov, 1967; V. K. Mikhaylov, 1967; V. A, Sarychev,
1967; L. V. Sokolov, 1967), To ensure sufficient reducing aerodynamic
moments in pitch and yaw, to the satellite on four long thin rods

is attached an aerodynamic stabilizer constituting the lateral

surface of the frustum of a cone.

Roll stabilization is ensured with the help of two two-axis
gyroscopes on the satellite. Their total angular momentum with
normal satellite orientation is perpendicular to the plane of the
orbit. The location of the gyroscopes are such that with any
disturbance of satellite orientation appear reducing gyroscopic
moments with respect to yaw and roll, Thus, in the examined circuit
the stability of the satellite in pitch is ensured by aerodynamic
moment, in roll by gyroscopic moment, and in yaw by the combined
action of aerodynamic and gyroscopic moments. A satellite with
an aerogyroscopic system of stabilization possesses only a stable
position of equilibrium,

Besides stabilization with respect to roll and yaw gyroscopes
ensure also damping of nature satellite oscillations, For this
the axes of rotors of gyroscopes are united with damping devices
and during precision of gyvrosco;es appearing during any disturbance
of normal orientation of the satellite, occurs dissipation of
creryy of natural oscillations,

The basic disturbance determining the accuracy of the system
o satellite stabilization is caused by entrainment of the atmosphere
of the rotating earth, ellipticity of orbit and errors of manufacture
of construction, Analysis of readings, of scientific equipment
(photometers, three-component magnetometer) on the "Kosmos-149"
satellite permits affirming that the aerogyroscopic system ensures
satellite stabilization with respect to the system of coordinates
according to angles of pitch, yaw and roll with a precision of not
less than 5°,



The action of solar light pressure 1s analogous to the action
of atmospheric drag. For artificial earth satellites light pressure
is a perturbing influence. However, for spacecraft (in particular,
for artificial satellites of the sun) moving distantly enough from
the earth and planets in almost circular orbits, light pressure
can be used for purposes of stabilization of the craft on the sun.

The ildea of Jjoint use of the gravitational field of the sun
and its light pressure for stabilization of an artificial satellite
of the sun has been proposed by O. V, Gurko and L, I. Slabkiy (1963).
They described the construction of a spacecraft which allows
stabilizing the actlon of a gravitational field and light pressure
and obtaining sufficient restoring moments at distences of up to
4 AU, from the sun,

Determination of moments of forces of light pressure acting
on & body, and analysis of stability of rotation of a geometrically
symmetric artificial satellite in a fleld of forces of light pressure
are the topics of works of A. A, Karymov (1962, 1964),

7.3. Spin stabllization. To ensure constant orientation of
a certain axis of a satellite in inertial space is frequently used
a stabilization system using gyroscopic properties of rotating bodies,
Thus, for example, it is known that stationary rotation of a
satellite around axes corresponding to the minimum and maximum
moments of inertia 1s stable.- In the presence of dissipative moments
only stationary rotation around an axis corresponding to the maximum
moment of inertla of the satellite remains stable. External moments
caused by the gravitational and magnetic fields of earth, atmospheric
drag, and light pressure lead to disturbance of the orientation of
a satellite stabilized by rotation, For the preservation of constant
orientation of a satellite for a long enough interval of time,
influence of external moments must be compensated with the help of
& special active device, which is switched on if the deflection of
the axis of rotation of the satellite from the assigned direction
exceeds the permissible value.
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The influeice of basic external moments (gravitational,
aerodynanic, magnetic, light pressure, and dissipative) on the rotation
of an axisymmetrical satellite was investigated in great detail by
V. V. Beletskiy (1958, 1961, 1963, 1365). The evolution of the
rotation of a satellite with a triaxial ellipsoid of inertia under
the impact of gravitational moments was examined by F. L. Chernous'ko
(1963), and under the impact of aerodynamic moments by Yu. G. Yevtushenko
(1965).

The basic deficiency of systems of stabillization of satellites
by rotation is the necessity of exact initial exhibition of the
axis of symmetry of the satellite in inertisl space, precision
twist of the satellite around this axis and periodic compenseation
of influence of external perturbing moments. For execution of these
problems are necessary all elements of active systems — orientation
sensors and actuators. The advantage of systems of spin stabilization
as compared to active systems is essentially lower expenditure of
energy.

In systems of spin stabilization may also be used steady-state
solutions for an axisymmetrical satellite in circular orbit obtained
ly 3. N. Duboshin (1959-1960) and V., T. Kondurarem (1959), These
solutions correspond to the rotation of a satellite with constant
angular veloci\y around the axis of symmetry, keeping constant its
position in the orbital system of coordinates, Cases are possible
in which the axls of symmetry is perpendicular to

1) the plane of the orbit,

¢) the radius-vector,

3) the tangent to the orbit,

Tn the last two cases the orientation of the axis of symmetry
o the satellite in the orbital system of coordinates is determined

1y the ratio of the moments of inertia of the satellite and the
speeil of rotation around the axis of symmetry,



Necessary conditions of stability of these steady-state solutions
were obtained by G, N. Duboshin (1960), and sufficient conditions
of stability by F. L. Chernous'ko (1964). A. P. Markeyev (1965,
1957) on the basis of results of A. N, Kolmogorov, V. I, Arnol'd
and Yu. Mozer proved the stability of steady-state solutions for
almost all points of the region were only necessary conditions of
stability are carried out, investigated, using methods of averaging,
nonlinear oscillations of the axis of symmetry of the satellite
in the near-resonance region, and examined the possibility of
appearance of parametric resonance in elliptic orbits.

In order to ensure asymptotic stability of stationary rotations
is necessary s damping mechanism which works only during deflection
from stationary rotation. Such an active damping device has been
proposed by V., A, Sarychev (1965). He obtained conditions of asymptotic
stabllity of stationary rotations. The damping mechanism can be
realized by purely passive means with the use of ideas proposed in
systemg_ of gravitational stabilization (V. A. Sarychev, 1964),

7.4. Stabilization with respect to magnetic fleld. For certain
scientific experiments 1t can be desirable to orient the satellite
with respect to the vector of the magnetic field strength of earth.
For this on the satellite is rigidly braced a sufficlently strong
magnet, interaction of which with the magnetic field of earth leads
to appearance of moments tending to combine the axis of the magnet
with the vector of the magnetic field strength of earth,

The basic results according to an analysis of the systems of
satellite stabilization with respect to the magnetic field without
the mechanism of damping of natural oscillations were obtained by
V. V. Beletskly (1963, 1965) and A. A. Khentov (1967). 1In these
works are investigated forced periodic oscillations of a magnet in
the magnetic field of earth, is estimated the perturbing influence
of the gravitational field of earth and atmospheric drag, and are
clarified conditions of appearance of resonance,
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The basic deficiency of satellite stabilization with respect to the
megnetic field of earth is connected with the complex character of
steady motion of a satellite in a magnetic field, instabillity of
the magnetic field, instability of the magnetic field of earth
itself and, as a result, the impossibility of achieving a high
enough accuracy of satellite orientation. Till now systems of
stabilization with respect to a magnetic field were used only as
auxiliary systems of preliminary damping decreasing the amplitude
>f natural satellite oscillations to values which allow using as
basic a system of gravitational stabilization.

In the present paragraph are briefly examined works directly
dedicated to theories of motion of satellites with passive systems of
stabilizations. Besides these works, in the USSR is carried out a
large number of studies in adjacent questions. Of them one should
note works about oscillations of a satellite (without a system of
stabilization) in elliptic orbit (V. V. Beletskiy, 1963;

V. A, Zlatoustov, 1964; D. Ye. Okhotsimskiy, 1964; V. A. Sarychev, 1964 ;
A. P. Torzhevskiy, 1964; F. L. Chernous'ko, 1963; I. D, Kill',
1963-1964), investigations about motion of bodies with cavities

filled with viscous liquid (N. N. Kolesnikov, 1962; F. L. Chernous'ko,
1965-1966; P. S. Krasnoshchekov, 1963; B. N. Rumyantsev, 1964),

works about optimum (minimum consumption of working substance)
deceleration of rotation of a satellite in an inertial system of
coordinates (B. A. Smol'nikov, 1964; M, Z. Borshchevskly, 1966;

T. V. Toslovich, 1966-1967), investizations dedicated to detecting

all positions of equilibrium of a system of two bodies united by an
ideal ball Joint, ir orbitel system of coordinates and derivation

of sufficient conditions of stability of these positions of equilibrium
(V. A. Ssarychev, 1967). These works are exanined more specifically

in § 6.

At present passive methods have durably entered the arsenal of
technical means used for stabilization of artificial satellites,
These methods, not requiring expenditures of working substance and



either not connected with expenditure of energy at all or requiring
minimum expenditures, turn out to be very effective, when it is
necessary to maintain a definite orientation of the satellite for

a long period of time and accuracy of the order of a few degrees

is sufficient., Systems of stabilization based on the use of passive
methods usually turn out to be sufficiently easy both absolutely
and in parts of weight of the satellite, which 1s especially
essential for small satellites, including satellites intended for
carrying out scientific investigations, Passive methods of stabiliza-
tion are also very effective on satellites with a long time of
active existence, utilized for realization of TV transmissions,
telephone and radio communications between continents, and on
meteorological satellites, Increase of accuracy, output to the
range of altitudes from 500 km to daily orbits, simplification and
increase of reliability, and use in passive systems of stabilization
of certain elements of active systems will lead to further expansion
of the fileld of application of passive methods,

§ 8, oBtimum Correction of Flight
aths o pacecra

Development of investigations in region of flight control of
spacecraft 18 intimately connected with solution of problems facing
contemporary space technology of exact realization of interplanetary
trajectories. The required high accuracy of interplanetary flights
is determined by the tendency to create crafts able to carry out
close approach with a selected celestial body at gigantic distances
from earth,

The need to ensure accuracy of realization of space trajectories
exceeding by several orders its terrestrial equivalents produced the
necessity of creation of additional systems on board a spaceship
which allow correcting orbit in the process of flight, A complexity
of creation of similar systems is that they can be built only on
the basis of elements of ordinary accuracy, Correctional devices
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have to be included (at least the last time) in points of trajectory
in which the influence of errors of the correction system on
corrected orbit parameters does not exceed the permissible level,.
Inasmuch as among correction errors there are power errors, the
formulated requirement means that for correction points of low
effectiveness of correction have to be used which can be connected
with additional expenditures of fuel. Therefore, to decrease the
welght of auxiliary spacecraft systems in many cases it is necessary
to conduct a thorough investigation of different properties of
motion for the purpose of finding optimum solutions during construction
of flight control systems of spacecraft. The theory of correction
of spacecraft orbits developed in the last decade is one of the
divisions of contemporary astrodynamics and the theory of automatic
control. The basic problems of the theory of correction of
parameters of spacecraft motion are formulated in a work of

G. N. Duboshin and D. Ye. Okhotsimskiy (1963).

The complexity of the problem of correction is determined by
the need to minimize the value of total fuel consumption or, what
is the same for systems with limited exit velocity of stream, the
total characteristic speed of correction in the presence of random
errors of determination of orbit and knowingly non-Gaussian errors
of performance of correcting maneuvers under conditions, in general,
dropping effectiveness of correction with the passage of time.
Therefore, if the correction is made late enough, a correcting pulse
and considerable additional weight on board the spacecraft can be
required, Early correction can be more economical; however, insufficient
accuracy of determination of orbit parameters by the moment of its
fulfillment can lead to insufficient accuracy of correction and to
the necessity of its repeated fulfillment.

The problem of correction can be divided in to three independent
problems. These problems include 1) the problem of determination
of orbits of spacecraft according to optical and radio observations,
2) the problem of detecting the most effective conditions of
correction of the obtained orbit, and 3) the problem of the most
rational distribution of measurements and correctional acts on

trajectory.
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The second problem can be solved independently of the first,
Regarding the third problem, it can be solved independently of the
first two only with certain simplifying assumptions., Leaving aside
questions of determination of orbits, we will give a short survey
of basic result attained at present in the theory of correction of
flight of spacecraft within the bounds of the last two problems,

Initially the problem on correction was regarded as a problem
of selection of a change of speed of flight which leads to hit in
an assigned instant in an assigned point of space (see, for example,
work of K. V. Kholshchevnikov (1965), V. M. Ponomarev (1965) or
"Reference book on cosmonautics" (1966) based on foreign materials).
Such & formulation of the problem permits using for calculation of
the magnitude and direction of the correcting pulse methods of celestial
mechanics (K. V. Kholshchevnikov). However, in reality the variety
of required corrected parameters is considerably wider, and practically
problems boiling down to such a formulation are absent.

In certain works is examined a correcting change of speed causing
an assigned change of orbit elements, Such a formulation strongly
complicates the problem and hampers investigation of optimum properties
of correcting maneuvers,

In 1959 D. Ye. Okhotsimskiy proposed regarding the correction
problem as a problem about change of the coordinates of the point
of crossing by the spacecraft ‘of the plane of a figure of & planet,
The plane of a figure usually means the plane passing through the
center of the planet and oriented orthogonally to the velocity
vector of approach of the craft with a nonattracting planet. Such
a formulation permitted decreasing the number of corrected parameters
of trajectory to two when the instant of approach of the spacecraft
with the planet 1s not essential and permitted considerably
simplifying analysis of characteristics of corrections.

In connection with small dimensions of corrected deflections
as compared to distances between planets, the problem of correction,
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in the first approximation, can be examined in linear formulation.
However, in the problem of correction is always present & nonlinearity
connection of corrected parameters of trajectory with characteristics
of motion near the planet. The basic source of nonlinearity in

this connection 1s the attraction of the planet, which should be
excluded in linear formulation.

In lectures on mechanics of space flights read by
D. Ye, Okhotsimskiy at Moscow University in 1961 was given a procedure
for eliminating nonlinear influence of attraction of the planet on
corrected parameters of trajectory. This procedure was used in a
work of E. L. Akim and T. M. Eneyev (1963), and alsc in a work of
A. K. Platonov, A, A, Dashkov and V, N, Kubasov (1965). Exclusion of
influence of attraction of the planet is achieved by using, as
corrected parameters, a component of the osculating sighting range
at point of closest approach with the planet. The osculating sighting
range is a small semiaxis of an osculating hyperbola regarded as a
vector lying in the plane of planet-centered motion and orthogonal
to the speed of the spacecraft at a: infinitely great distance from
the planet within the bounds of the two-body problem.

Those or other characteristics of approach with the planet can
be simply depicted on a similarly built aiming plane (plane of a
figure) (R. K. Kazakov, V., G, Kiselev and A. K. Platonov, 1967).
Iermissible values of change of characteristics of approach with
a8 planet determine in the plan2 of a figure the region of probable
deviations, disregarding the attraction of the planet. The dimensions
of this region determine the required accuracy of realization of
interplanetary trajectory or the required accuracy of its correction.
The characteristics of correction in this case depend on the degree
of influence of the pulse change of velocity vector in some point
of trajectory of deviations of coordinates in the plane of a figure.

Along with successful selection of corrected parameters of great
importance for investigation of correctional properties of interplanetary
orbits 1s simplicity of analytic expressions for the isochronous



derivative of parameters of motion along the trajectory. Very

simple expressions for isochronous derivatives were obtained by

V. I. Charnym (1965) as a result of study of properties of a

linearized system of perturbation equations within the bounds of

a two-body problem. These investigations were continued by

V. G. Khoroshavtsev (1965), who examined the problem of calculation

of isochronous derivative parameters of motion of an artificial
satellite for the case of long intervals of time of motion, when
trajectory is broken up into sections, and also by V. N. Kubasov (1966),
who obtained the analytic dependence of the value of the shown
derivative on flight time. Obtained analytic expressions for isochronous
derivatives permitted considerably simplifying analysis of character-
istics of correctivons during flights to the moon and planets.

The general properties of correctional maneuvers during inter-
planetary flights were investigated in a work of A, K. Platonov (19¢ ).
He examined in linear approximation the characteristics of a
correctional maneuver on different sections of flight path to planets,
As correctable parameters of trajectory are used the moment and
coordinates of the point of intersection by the spacecraft of the
plane of a figure of the planet. It is assumed that correction is
made by way of instantaneous change of the velocity vector of
flight in one or several points of trajectory and that there 1is
complete information about the motion cf the spacecraft. The
investigation 1s made for the purpose of decreasing the value of
the total correction pulse,.

Minimization of the value of correcting pulse of speed during
single-time correction is possible, if the number of corrected
parameters is less than three., For example, in case of correction
of two coordinates in the plane of a figure, the pulse of minimum
value belongs to the plane of optimum correction stretched to the
gradients of these coordinates at the point of correction. The
pulse oriented along the normal to the plane of optimum correction
does not cause in linear approximation a change of coordinates in
the plane of & figure, Therefore, such a pulse direction can be
called zero-direction. The pulse along the zero-direction changes
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only the time of flight to the planet without changing the relative
position of the spacecraft and the planet during approach.

Effectiveness of correction in a given point of trajectory can
be characterized by the influence of the totality of unit pulses
on the coordinates in the plane of a figure, If the direction of
the correcting speed can be any direction, such a totality is a
unit sphere or a unit circle in the plane of optimum correction.
Tn the space of correcting parameters the reflection of such a
sphere is the ellipsoid of the influence of unit pulses of correction,
for example, the ellipse of the influence in the plane of a figure.

The stretched ellipse of influence indicates irregularity of
directions in the plane of a figure from the point of view of
correction. Deflections lying close to the direction of the major
semiaxis of the ellipse is easier to correct than deflections,
in the direction of 1ts minor semiaxis,

In & work of A, K, Platonov (1966) it is shown that with the
passage of flight time ellipses of influence aspire to a circle,
the radius of which aspires to zero, For example, during flights
to Venus and Mars ellipses of influence are turned into circles
approximately 15 days before approach with Venus and two months
before approach with Mars. The radius of such a circle in every
moment with good accuracy is numerically equal to the time remaining
before approach with the planet, 1In the earlier stages of flight
the ellipses of influence éan differ by considerable stretchability,
especially strong in points of degeneration of characteristics of
correction.

The orientation of the optimum correcting pulse in space is
connected with zero-direction orientation, It is shown that in
the general case of flight to planets zero-direction orientation
is preserved neither in absolute nor in orbital systems of
coordinates, enduring especially sharp change in points of degeneration
of correction characteristics. On the last stage of flight
zero-direction is closely to the direction to the planet,
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Minimizatjon of the value of the correcting pulse is possible
also if some parameter of trajectory does not have to be maintained
with high accurac; or has to be maintained with an accuracy of up
‘o a period. A. K. Platonov examines an example of minimization
o' the value of the correcting pulse during correction of three
parameters — two coordinates in the plane of a figure and the
time for execution of conditions repeated every twenty-four hours
of visibility from earth of approach of the spacecraft with the planet.

In this case first of all one should determine the component
of the correcting pulse in the plane of reference of optimum
correction and intended for correction of coordinates in the plane
of a figure., After that one should select the minimum value of change
of flight time by a pulse along zero-direction. One should consider
that in the general case of a nonorthogonal bench mark of correctable
parameters the gradient of time has a projection on the plane of
optimum correction of coordinates and, therefore, the correction of
coordinates, in general, changes time of arrival. This forced
variation of time depends on the value and direction of the correcting
pulse in the reference plane, i,e.,, in the end, on values of
corrected coordinates, The strongest forced change of time oceurs,
if the correcting pulse in the plane of reference is directed along
the projection of the time gradient to this plane.

It i1s necessary to note that if the value of forced variation
exceeds the assigned accuracy- of correction of time, then it must
be taken into consideration during formation of the correctable
deflection, since the optimum moment of approach with the planet
depending upon the value of forced variation can be displaced
to those or4 other days (in the examined case time will never require
correction of more than 12 hours),

/

‘ It i1s interesting to clarify the possibility of degeneration
of correction characteristics in some point of trajectory. For this
purpose in the work is investigated a matrix connecting motion
parameters near the planet with the components of the correcting
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pulse, It is shown that at an angular distance from the point of
correction to the place of approach with the planet equal to 1800,
the examined matrix degenerates., Not penetrating analytic details,
we will examine the geometric meaning of this fact.

At a point with an angular distance of 180o the correcting
pulse change only motion parameters in the plane of the trajectory.
The pulse directed perpendicularly to the plane of trajectory
turns this plane around the direction to the impact point and
cannot change in linear formulation coordinates in the plane of
a figure for the planet. If the plane of orbits of the planet and
spacecraft are coplanar, then correction of deflections along the
binormal is impossible. The ellipse of influence in this case
degenerates into a line segment oriented along the line of
intersection of the plane of a figure and the plane of trajectory
of the craft. Any correcting pulse orthogonal to a gradient of
such deflection in the plane of a figure does not cause in this
case change of coordinates in the plane of a figure — the plane of
optimum correction is not determined. Therefore, in the examined
point the zero-direction is turned into a zero-plane perpendicular
to the shown gradient. In all the remaining points of the trajectory
there is only a zero-direction lying in the plane of the trajectory;
however, the effectiveness of correction of deflections along the
i.inormal of the trajectory is close <o zero in the vicinity of a
point with an angular distance of 180°,

The orientation of the plane of optimum correction significantly
differs from the one described, if the orbit of the spacecraft and
planet do not lie in one plane, 1In this case lateral deflection
during correction is formed by two causes — change of inclination
to the plane of the trajectory and change of the instant of approach
with the planet. The latter cause {s caused by the circumstance
that in case of noncoplanarity of the orbits of the planet and
craft, change of moment of arrival leads to exit of the planet from
the plane of the trajectory of the craft, i.e., to the appearance
of a component of displacement directed elong the binormal.
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It Tollows from this that in case of noncoplanar orblts of the
craft and planet correcting deflections of speed in the plane of
the trajJectory, changing flight time, act on lateral deflection,
in other words, the gradient of lateral deflection should have a
component in the plane of the trajectory. Therefore, at the point
ol correction with angular distance 130° the gradient of lateral
deflection becomes coplanar to the plane of trajectory. The plane
of optimum correction in this point coincides with the plane of
trajectory., Let us note that the gradient of time in this case
coincides with the gradient of lateral deflection, i.e,, correction
of time, regardless of change of lateral coordinate, in this point
is 1mpossible.

It is necessary to stress that given considerations indicate
the necessity of investigation of spatial motion during calculation
of correction, Correct evaluation of the value of correcting pulse
can significantly differ from an evaluation obtained from sclution
of a two-dimensional problem, since basic power expenditures for
correction of lateral deflections essentially depend on the degree
of noncoplanarity of the orbits of craft and planet,

In a work of A, K, Platonov (1966) is studied the possibility
of degeneration of correlation characteristics in the geocentric
section of flight.

During flights to the moon and planets motion in the geocentric
section of trajectory 1s close to parabolic. Investigation of the
matrix of derivatives utilized during the work of correction on the
assumption that motion occurs along & parabolic trajectory shows
that the’ matrix degenerates if the correctional point is in the
perigee of the orbit. In this case the effective direction for
correction turns out to be the only direction of flight speed and
all three gradients of corrected parameters coincide. In the real
case, the trajectory differs from parabolic and strict degeneration
of correctional properties does not occur. However, the influence of
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a pulse collinear to the speed of flight considerably exceeds the
influence of a pulse orthogonal to the speed of flight. Physically
this is explained by the fact that at the beginning of the orbit,
near its perigee, the spacecraft possesses high speed and for turn
o' veloclity vector in space is required a large lateral pulse,

it the same time a comparatively small pulse directed along, the
welocity vector can considerably change the energy of geocentric
mo* ton, since the change of energy is proportional to the velocity
of flight. Therefore, influence on trajectory with the help of

a velocity pulse leads basically to a« change of those characteristics
of motion which are connected with the energzy of geocentric motion.
In other words, near earth is practically possible correction of
only one parameter of trajectory — either deflection in the plane
of a figure along a certain direction or time of arrival,

With passage of time of flight the situation changes, Deceleration
with removal of the craft from earth facilitates change of direction
of motion and leads to the possibility of affecting deflections in
the plane of a figure orthogonal to the line of power influence;
~waracteristics of corrections of different deflections are levelled.

The above-described results illustrate the complex character
o Jdependence of power expenditures on moment of correction. The
opinion that these expenditures are lower the earlier correction
sccurs, true for the last section of orbit, is, in general, incorrect,
As was shown, on the trajectory are »oints where correction is
considerably hampered or is simply impossible, These points should
ie avolded in organization of a single-time correction of orbits of
spacecraft,

A. K. Platonov examined also properties of correction in the
“inal section of trajectory before approach with the planet, 1In
view of the proximity of the planet and the craft flying to it,
their relative motion can be represented in the first approximation
as uniform rectilinear motion, and the set of possitle trajectories
as a bundle of parallel lines.



The plane of optimum correction in this case is a plane
perpendicular to the axis of the bundle. The ellipse of influence
is a circle the radius of which is equal to the time remaining up
t> Incidence with the plane of a figure. Thus, outside of dependence
on the values and mutual location of speeds of planet and spacecraft,
the effectiveness of correction at the end of trajectory is determined
by the time remaining up to approach with the planet. 1In other
words, effectiveness of correction is identical during flight to
the moon and the planets of the solar system if correction is made
with the same time remaining before incidence with the plane of
a figure, Another conclusion is the possibility of establishing
the necessary direction of the engine for correction near the
planet by rotation of the craft around the direction to the planet.
The work gives simple relationships determining the characteristics
of correction in the section of flight near the planet,

Above were described results of investigation of the characteristic
of effectiveness of correction of motion of spacecraft in different
points of flight paths to planets, If it is taken into account
that only single correction of trajectory is possible, then obtained
regularities permit comparatively simply selecting the moment of
correction ensuring minimum power expenditures. However, in
reality one should consider that the engine of the spacecraft allows
repeated switching on and off of thrust. In this case in the
problem of correction appear additional free parameters which can
be used to decrease power expenditures,

In a rork of A, K. Platonov, A, A, Dashkov and V., N, Kubasov
(1965), and also in a work of A, K, Platonov (1967) was considered
the problem of selection of the best mode of multiple ideal correction.
Ideal correction usually means correction deprived of errors of
forecast of motion and errors of 1ts performance.

In these works this problem was examined for the case of a
limited acceleration, t was assumed that control is carried out
for the purpose of keeping rated values of certain functionals in
trajectory, for example, coordinates in the plane of a figure of
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the planet, and the minimized functional is the value of total
characteristic speed. The problem was solved by a method developed

in works of D. Ye, Okhotsimskiy and T. M. Eneyev (1957) of investigation
of variation, which in this case permitted conducting an investigation
of properties of obtained optimum conditions of control up to the

end,

It was shown that optimum direction of controlling acceleration
in any moment of time should correspond to the point of the ellipsoid
of influence having maximum projection on & certain constant vector
in the space of corrected parameters, depending on the assigned
correcting displacement. The engine should be switched on in
points of the trajectory for which the projection exceeds a certain
given value. A criterion of absence of conditions of multiple
switching on of the engine was formulated consisting of the
existence of an everywhere convex totality of ellipsoids of influence
in any interval of the examined interval of flight time., Optimumness
of the pulse character of conditions of correction was also shown.

Multiple ideal pulse correction was investigated in the above
works of A. K, Platonov, A, A. Dashkov and V., N, Kubasov (1965) and
A, K, Platonov (1967).

In this case a minimizable value is the sum of the mod.il of
correcting pulses. 1In spite of the fact that the space of correcting
rarameters has special, non-Euclidean metrics, for investigation
or the laws of multiple correction it i1s possible to use a procedure
analogonrs to that used earlier. During investigation of single
correction was examined & set of correction pulses equivalent from
tne point of view of optimization. This set formed a unit sphere
in space of speeds or a unit circle in the plane of optimum correction,
Conversion of the examined figure of equivalent pulses in the space
of corrected parameters permitted obtaining a figure of influence
of correction pulses on corrected parameters, for example, an
ellirse of influence in the plane of a figure.

75



Likewise from the totality of equivalent pulses of multiple
correction can te obtained the figure of influence in the plane of
a figure, with the help of which is investigated the influence of
different parameters (for example, moment of correction, direction
of pulse, etc.) on the total characteristics of correction.

Thus, for example, with double pulse correction, every pair
of pulses, the sum of the values of which is equal to one, corresponds
in tne plane of a figure to a figure of influence in the form of
& parallelogram, consisting of straight lines connecting pairwise
points of ellipses of influence corresponding to selected moments
of correction. Every point of this parallelogram car. be corrected
by a unit total pulse, Modifying moments of correction and direction
of action of pulses, we will obtain a set of parallelograms filling
the space 1nside the envelope tangent to the set of ellipses of
influence all variable with the passage of time of flight. If this
envelope has stralght sections, then there are deflections requiring
double correction.

It follows from this that for construction of the maximum
figure of influence of multiple correction it 1s necessary to roll
the given set of ellipsoids of influence of single correction with
a straightening plane. The obtained figure determines different
the tactics of correction, depending upon the direction of corrected
deflection in the space of corrected parameters, The straightened
sections of the obtained convex figure correspond to multiple switching
on of the engine (double on a ruled surrface, triple on a plane, etc.),
and sections belonging to the initial set of ellipsoids of influence
to a single switching on of the engine, It follows from this
that multiple pulse correction can be required only when the envelope
of the set of ellipsoids of influence in the examined interval of
time of flight is not everywhere convex; only then will straightened
sections exist, Let us note that not everywhere is a convex set
of ellipsoids of influence possible only in case of nonmonotonic
dependence of their characteristics on time, Otherwise there is
always an ellipsoid embracing all the remaining ellipsoids of
influence.
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It follows from this that for every trajectory there is a
finite number of fixed moments and directions of pulses for optimum
multiple ideal correction of selected corrected parameters. These
moments and direction are determined by the points of contact of
the straightening plane of the initial nonconvex set of ellipsoids
of influence. The maximum number of switchings on of the engine
does not exceed the number of corrected parameters,

Thus, solution of the problem of the best conditions of
correction contains cases of multiple switching on of the engine
even In the absence of control errors, Durineg such correction occurs
alternate displacement in the plane of a figure along the most
efrective directions in such a manner that the total displacement
is equal to the assigned displacement, With every switching on
of the engine, aiming in the plane of a figure is produced in a new
point, 1i.e., the characteristics of correction are determined from
ilr'ferent conditions. Therefore, such correction can be called
nonuniform multiple correction, in contrast to the usual case of
uniform multiple correction, in which every subsequent correction
corrects errors of the preceding correction, and conditions of
correction remaln constant,

The nonmonotonic character of the dependence of characteristics of
elllipses of influence on time of flizht can be connected with
demeneration of correction characteristics in a certain point of
‘rajectory., In such cases is observed a sharp irregularity of
itrections in the plane of a figure from the point of view of
«+t'ractiveness of correction., Single correction in points of
inreneration, as a rule, is practically impossible, In such
cases nonuniform correction can be powerfully profitable, 1In
‘ontrast to single correction, one of the switchings on of the
=1n;'ine can occur near the point of degeneration of correction
cnaracteristics, The latter circumstance is explained by the fact
that In this point of trajectory the effectiveness of correction of
a certain linear combination of coordinates in the space of correcting
parameters can be considerably higher than in the remaining points
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of the trgjectory. Therefore, it is expedient to correct such &
component of corrected deflection namely in the examined point, and
to correct the remaining component in any other point of trajectory
more effective for them. An example of such a situation is a set
of influence ellipses given in a work of A, K. Platonov (1966) in
the plane of a figure corresponding to flight to Mars. In the same
place is built a figure of influence of nonuniform correction. The
powerfully optimum correction of a majority of deflections is
nonuniform correction with the switching on of the engine at the
point of degeneration at the beginning of flight and then on the
ninetieth day of flight.

The described results do not depend on the form of the set
of figures of influence. In particular, this set can correspond
to correcting pulses, direction of which one way or another is
fixed in space. 1In this case, and also in the case when the number
of corrected parameters exceeds the number of independent correcting
influences in each point of trajectory, application of nonuniform
correction can be necessary regardless of considerations of minimization
of total speed.

Similar situations were examined in a work of V, N, Kubasov (1966)
and in work of A. K. Platonov and Yu. D, Teterin (1966).

In a work of V., N, Kubasov are investigated features of the
method of correction of interplanetary trajectories by a pulse
directed along the line spacecraft — sun, With such a method of
correction the system of orientation of a spacecraft can be rather
simple, Single correction by the given method permits independently
changing only one parameter of trajectory — by changing the value
of the correcting pulse with its direction fixed. Multiple nonuniform
correction is necessary for correction of several parameters of
trajectory.

In the work it appears that the total possible number of
corrected parameters with such "solar" correction cannot exceed four.
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It also appears that during "solar" correction of coordinates

in the plane of a figure correction of the time of approach with
the planet is impossible. The latter circumstance 1s explained

by the fact that during "solar" correction the correcting pulse
belongs to the plane of trajectory and therefore the orientation of
the plane of trajectory cannot be modified. In view of this

with noncoplanar orbits of spacecraft and planet, approach of

craft with planet is possible only at that moment of time when the
planet passes the node of the orbit of the craft in the plane

of the orbit of the planet.

In the work is investigated also the optimum possible strategy
during such "solar" correction.

In a work of A, K, Platonov and Yu. D, Teterin are investigated
properties of correction of two or three parameters of spacecraft
trajectory when the correcting pulse should belong to a certain
plane oriented in a certain way in space,

Such limitation can be dictated by conditions of simplicity
of spacecraft construction,

Actually, with optimum correction, depending upon corrected
arrors, the correcting pulse can bs directed in space in any manner,
This means that for spacecraft srould be provided a corresponding
system of orientation having at least two degrees of freedom
reletive to fixed stars, Simpler is a system of orientation having
only one degree of freedom and allowing rotation of the spacecraft
around a certailn axis, The axis of rotation besides can be directed
towards any bright star, for example, the sun, and the correcting
pulse can be disposed in a plane perpendicular to this direction,
Correction in this case can be called two-component correction
since there are only two free components of the correcting jpulse
correcting not more than two independent trajectory parameters,

In the work it is shown that in flights to outer planets, there
are sections of trajectory where the characteristics of such single
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correction of two traJectory'parameters differ 1little from the

characteristics of optimum correction.

The need to correct three parameters of trajectory requires
the carrying out of double correction with nonuniform conditions of
correction — in such a manner so that as a result of two two-component
corrections three selected parameters of trajectory took on the
rated value. In the work are investigated general properties of
such two-component three-parameter double nonuniform correction.
Also investigated are special properties of correction of coordinates
in the plane of a figure of the planet and the time of flight when
the correcting pulse lies in a plane orthogonal to the direction
to the sun,

It is shown that in linear approximation in the plane of the
first correction is a direction depending only on the selected two
moments of correction such that the component pulse of correction
along this direction does not change corrected parameters, It is
shown also that for the examined solar correction orientation
of such zero-direction does not vary during the period of the whole
flight and coincides with the orientation of the binormal of the
trajectory. This permits formulating simple rules of strategy
during such double correction.

General requirements for systems of correction of interplanetary
trajectories are examined in & work of A, A. Dashkov (1966). 1In
this work on the basis of analysis of properties of trajectories
are determined the basic requirements for accuracy of fulfillment
of correction during flight to Mars, Venus and the moon, and are
also discussed certain possible schemes of spacecraft orientation
during correction. One of the most interesting methods of orientation
of a spacecraft near a planet, useful for correction purposes, is
described in & work of A. A. Dashkov and V. V. Ivashkin (1965),
This method was used during flight of Soviet automatic lunar stations
for maneuver near the moon,
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The characteristics of correction of flight paths to Mars and
Venus were examined also in a work of A, K. Platonov (1966). The
characteristics of correction of flight paths to Jupiter are
examined in a work of R, K, Kazakova, V. G. Kiselev and A. K. Platonov

(1967).

Thus, the problem of selection of the most effective conditions
of correction of the obtained orbit can be considered at present
sufficiently developed.

Further investigations in this problem have to be directed
towards search of reliable and fast algorithms of determination of
optimum points of switching on of a correcting engine,

The most interesting and at the same time the least developed
problem at pr2sent is the problem of optimum distribution of measure-
ments and correctional acts on trajectory.

The formulation of this problem is contained in a number of
foreign and domestic works (A, Rozenblyum, 1961; 3. N. Duboshin
and D. Ye. Okhotsimskiy, 1963).

The complexity of the examined problem consists of the fact
that solution of the problem of correction is connected with the
necessity of exact determination of actual parameters of motion
juring flight, In turn the accuracy of determination of the
actual orbit depends with a given composition and accuracy of measured
jarameters on the location of the measuring interval in orbit and
fts extent, Tightening the phase of measurements leads, as & rule,
to displacement of points of correction to a region of smaller
effectiveness,

An unpleasant circumstance 18 the jependence of, in general,
of the accuracy of determination of the ortit of the craft in a
certain instant of flight on the maznituie, direction and places of
applicetion of correctin, tulres in the past and in the future,



A priori errors of performance of future corrections are knowingly
non-Gaussian in nature, in view of thelr dependence on the correcting
pulse (this circumstance was given attention by M, I, Lidov),

Finally, the above-mentioned results show that the optimum points

of correction can gravitate to certain fixed points on the trajectory,
if nonuniform correction is optimum. 1In this case subsequent
distribution along the trajectory of correctional acts depends on

the direction of displacement in the space of corrected parameters
and varies with change in forecast values,

The greatest difficulties at present are in the mathematical
formulation of the problem of optimum strategy of correction.
Such a formulation should, on the one hand, ensure the possibility
of solution of the problem, and on the other hand, be sufficiently
strict and allow revealing the basic effects and regularities in
its solution., This first of all pertains to selection of a criterion
of optimumness during the carrying out of ccrrection,

In spite of the fact that in every concrete flight it 1is necessary
to carry out correction not on the average, but "almost surely," with
a probability close to one, during the first attempts to solve the
described problem as a simpler criterion of necess.ry power expenditures
was examined mathematical expectation by the total characteristic
of speed in the presence of random errors of measurements, In such
a formulation the problem is sxamined by V. A. Yaroshevskiy and
G. V. Parysheva (1965), who investigated a one-parameter ideal
correction, For the case of Gaussian errors of measurements and
the absenge of errors of adjustment of pulses the problem is sclved
up to the end, On the assumption that the value of correcting
pulses linearly depends on all preceding values of deflections of
the corrected coordinate from the nominal value, are obtained
axpressions determining the minimum mathematical expectation of
consumptios on correction, ar. & simple procedure for determination
of optimum moments of correction in the plane effectiveness of
correction — accuracy of forecast, There is shown the optimum
quality of “"under correction” — during every correction one should
cozmpensate only part of the deflection of the coordinate from the
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rated value. In the work is also made a comparison of discrete and
continuous correction for simple model problems,

Realizing the weakness of the criterion of optimumness of
correction in the form of minimum mathematical expectation of total
speed and at the same time wishing to preserve simplicity of
computations and analysis, the authors propose using as a criterion
of optimumness a certain expression composed of mathematical
expectations of separate pulses and approximately equal to the
maximum value of total speed realized with the assigned probability.

In a werk of V. A, Yaroshevskiy and G. V, Farysheva (1966) is
examined the problem of correction of altitude and speed in the
pericenter of trajectory of a spacecraft approaching a planet of
assignment. The optimum number and distribution of pulses is
ietermined for a different character of change of accuracy of
ijetermination of trajectory with change of 3istence to the planet,
initial miss and the distance of the last correctiorn. The protlem
is solved is assuming the presence of errors of adjus:ment of pulse
not depending on 1ts value, The mathemtatical expectation of the
*otal characteristic speed of correction is =minimized on the
assumption that correctirg pulses have a transverse direction
(this direction is clos: to optimum if correction i{s made at a
ilstances greater than 2-3 planet radil).

In a more general formulation the protlem of statistically
ortimum pulse correction {s examined in a work of I, A, Roguslavskiy
(19¢), In the work is assumed inderendence o errors of measurements,
errors of performance of correction, and also errors of evaluation
o miss {n a certain point of <rajectory with errors of performance
a* correction in subsequent point's of trajectory, The problexm is
{rvestigated of detecting during the designin, of a system of
correction of & method of selection of optimum correcting pulses {n
all roints of trajectory fixed Tor correction tesides the last one,
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It is ass.med that the method of selection of the last pulse
maximizes the possibility of spacecraft incidence in assigned region
o permissible miss, and the method of selection of preceding pulses
minimizes a posterioril estimators of random variable of total
claracteristic speed of correction; by experiment are considered
flight to a selected point of correction, determination according
to the results of measurements of vector of miss and application
of a pulse in the selected point of correction (with exact measurement
of its actual magnitude and direction).

Initially is examined the simpler problem of minimization of
aposterior{ (in the above sense) mathematical expectation of total
characteristic speed of correction, under the condition that the
probability of hit of the spacecraft in a fixed region is equal
to the maximum value on a set of correcting pulses at the point of
last correction, In general form is described a procedure of detectin.
of the solution of the problem at hand, based on the method of
dynamic programming., In the appandix to the work is given a method
of selection of optimum pulses of double one-dimensional correction
(analogous to the one examined in a work of V. A, Yaroshevskiy and
5. V. Parysheva, 1965),

Further is examined the problem of minimization of the maximum
value of total speed of correction determined by the assigned (close
to zero) level of probability of the fact that the total speed of
correction will exceed the maximum value shown. It is shown that
with independent errors of observations and performance of correction
(independence of errors of determination of miss from errors of
realization of puises in preceding points is not required) for
solution of the problem at hand the procedures of dynamic programming
are sufficient, In general form is described a procedure for fixed
moments of correction. In the appendix to the work is given an
example of such a method for the case of one-dimensional double
rorrection with {ndependence of forecast errors from errors of
realigatior. of pulses — in this case the procedure is essentially
simplified.



For the case of abserice of errors of performance of correction
is proven the necessity of "under correction" both in case of
minimization of the mathematical expectation of total speed and in
case of minimization of maximum value of total speed. At the point
of the last correction "under correction” is not optimum. It 1is
also shown that with hit of the vector of miss in a certain region
the optimum pulse in a given point of trajectory is equal to zero,
where the dimensions of the region are less the higher the level
of probability of maximum value of total speed and the greater the
errors of forecast in subsequent instants. The dimensions of
this region are even greater the greater the error of performance
of correction. During calculation of errors of reallzation of
pulse "under correction" In the last point becomes optimum,

In the example of the one-dimensional protlem examined in the
appendix i1s investigated the influence of the criterion of
optimumness of & double one-dimensional corr.ction on & value of
"under correction" in different points of trajectory. As criteria
of optimumness of correction are examined the mathematical expectation
of total characteristic speed, the approximate expression for maximum
value of total characteristic speed (close to the expression
proposed by V. A, Yaroshevskiy and G. V. farysheva for the criterior
of optimum correction) and, finally, the maximum velue of total
‘haracteristic speed realized with essisned protarility close to
one. It is shown that maximum "unier correc'ion” is obtained In
the case of application of the first of three criterla and that the
o'her two criteria lead to approximately ldentical values of
"under correction," considerably lower in value,

The most severe formulation of the protlem of detecting
optimum strategy of correction of Tlisht path of spacecraft 1is
contained in works of D, Ye. Okhotsimskiy, V. A, Ryasin ani
. N. Chentsov (19€7)., In a work of V., A, Ryasin (19¢c) is examined
a simple model problem sbout single one-parameter correction, in
an example to which the author was able to demonstrate a general



approach to the problem of correction as to the problem of detecting
o} imum stratesy in a game with nature, Namely, into consideration

ic introduced a space of elementary outcomes unknown to the observer
the elements of which are errors of guidance of the spaceship into
ortit and errors of tracking its motion having a known probability

or' distribution, Further into consideration is introduced informetion
space known to the otserver the elements of which are selection of
totalities of possible measurements of characteristics of motion

for different flight paths of the spacecraft, The set of possitble
noments of correction and correcting pulses is the space of control,
it is shown that if measurements are taken in fixed instants and
effectiveness of correction varies monotonically, then 1¢ is
sufficient to examine the subclass of control for which correction

is made in any ot the instants coinciding with moment: of measurements.
0f all controls are examined only those for which the value of

total speed of correction does not exceed the given *alue., Further

Is introduced the idea of strategy, which is defined as a measursble
function assigned in informition space with values in the space of
controls. In other words, every set of measurements along the whole
‘rajectory is coordinated with certain instants and correc*ing pulses
(according to & rule determined by strategy). With every selected
strategy is connected a certain set of possible errors with a known
probability in the space of elementary outcomes and, consequently,

a definite probability of hit in the region of permissible errors

in the space of corrected parameters, If this probability is
maximum, then the corresponding strategy is optimum. The problem

Is to establish the existence of optimum strategy and to give a method
of its construction,

In the given formulation are absent errors of performance of
rorrection; however, they can be considered expanded by determination
of the space of elementary outcomes,

The basic result of author, undoubtedly, beneficially affecting
the trend of further investigations, is the idea about the fact
that the search for optimum strategy signifies the search of a certain



partition of information space into regions corresponding to the
carrying out of correction in identical instants, and the construction
of optimum functions for determination of the characteristics of

the correcting pulse in each point of information space. Moreover,
in the work is proved that making certain, very general, assumptions
with any partition of information space can be found functions which
are optimum functions of the correcting pulse. In other words, it

i1s possible to examine only strategies in which the function of
correcting pulse does not depend on the function of the moment of
correction, and to detect in this subclass of strategies the strategy
with optimum moments of correction.

Optimum functions of correcting pulse in information space can be
selected regardless of its partition. The optimum partition of
information space depends on the functions of the correcting pulse
and can be found with the help of the principle of dynamic programming.
In the work is proved that every such regicn of information space
constitutes a cylindrical set with a base in the subspace of measure-
ments preceding the moment of carrying cut of correction; the
decision about correction is made on the basis of past information
and does not depend on future information. The shown regions of
information space corresponding to identical moments of correction
io not cross, and their sum composes the whole space, Therefore,

*ne procedure of search for optimun partition of information space
looks as follows:

1} construction in the whole irrormation space of characteristics
o7 the magnitude and direction of the correctins pulse supplying
the maximum probability of fulfillment of the assignment during
flisht;

2) determination in all of informatior space of the probability

o7 fulfillment of assignment with the use of the tutit optimum
correcting pulse functions;
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3) sequential, starting with the end of flight, separation
in Information space of sets of elements for which fulfillment of
correction in a given moment leads to a greater probability of
success than fulfillment of correction in subsequent instants,
taking into account new information;

4) partition of information space to unknown regions is as
follows: separation of & set for which the carrying out of correction
in the first moment is the most optimum; separation then of the
crossing of the remaining part of the information space and the set,
for which the carrying out of correction in the second moment
is more optimum than in later moments; separation of the crossing
of the remaining part of information space and the set for which
the carrying out of correction in the third moment is more optimum
than in the one following it, etc.

The process of making the decision about correction consists of
the following. In consecutive instants the observer obtains a
selection of measurements, If after the first measurement the
observer discovers that this measurement belongs to the base of the
cylindrical region of correction in the first instant, then correction
is made in the first instant; otherwise a second measurement is
taken, and it 1s checked whether the obtained selection from two
measurements belongs to the base of the cylindrical region corresponding
to the carrying out of correction in the second instant, etc.

Finding of optimum regions involves great difficulties and 1is
facilitated in the case of normally distributed errors. In the work
i1s given a solution of the problem for the case of a one-parameter
ideal correction within the bounds of a model formulation with Gaussian
errors of removal and measurements.

In a work of D, Ye., Okhotsimskiy, V. A, Ryasin, and N, N. Chentsov

(1967) the described method is used for the case of one-parameter
double 1deal correction.
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Strategy in double correction is determined by the partition
of information space into cylindrical sets corresponding to identical
moments of carrying out two corrections to which are assigned
controlling functions of the first and second corrcction. A
theorem is given of the existence of the optimum strategy of double
correction, It is shown that the value of "under correction" tends
to zero with increase in accuracy of measurements. With almost
exact measurements optimum strategy can be essentially simplified,
An example of close to optimum strategy of double correction is given.

Thus, the problem of optimum correction of orbits of spacecraft
by the efforts of Soviet sclentists {s investigated and in considerable
degree {s advanced on the way to solution. Rasic efforts were
directed towards detecting optimum conditions of correction, investigs-
tion of general properties of correctional maneuvers, selection of
convenient corrected parameters, construction of technically simple
methods of correction, detecting of approximate cri.eria of optimumness,
which allow solving the protlem by simple means, investigation with
the help of model problems of basic effects and regularities
during optimum imperfect correction, on strict formulation of the
problem of optimum imperfect correction and detecting of methods
o 1ts solution. Successes of Soviet sclentists in the region of
rractical application of the theory of optimum correction is
frniicated by the carrying out of corrections of orbits of spacecraft
launched by the Soviet Union to the moon and planets of the solar
sistem (see: "Investigation of upper a'mosphere and outer space.”
Report of KOSPAR, 9th plenum, Vienna, 19<€),
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